Fire Alarm & Emergency Communication System Limitations

While a life safety system may lower insurance rates, it is not a substitute for life and property insurance!

An automatic fire alarm system—typically made up of smoke detectors, heat detectors, manual pull stations, audible warning devices, and a fire alarm control panel (FACP) with remote notification capability—can provide early warning of a developing fire. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire.

An emergency communication system—typically made up of an automatic fire alarm system (as described above) and a life safety communication system that may include an autonomous control unit (ACU), local operating console (LOC), voice communication, and other various interoperable communication methods—can broadcast a mass notification message. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire or life safety event.

The Manufacturer recommends that smoke and/or heat detectors be located throughout a protected premises following the recommendations of the current edition of the National Fire Protection Association Standard 72 (NFPA 72), manufacturer’s recommendations, State and local codes, and the recommendations contained in the Guide for Proper Use of System Smoke Detectors, which is made available at no charge to all installing dealers. This document can be found at http://www.systemsensor.com/appguides/. A study by the Federal Emergency Management Agency (an agency of the United States government) indicated that smoke detectors may not go off in as many as 35% of all fires. While fire alarm systems are designed to provide early warning against fire, they do not guarantee warning or protection against fire. A fire alarm system may not provide timely or adequate warning, or simply may not function, for a variety of reasons:

Smoke detectors may not sense fire where smoke cannot reach the detectors such as in chimneys, in or behind walls, on roofs, or on the other side of closed doors. Smoke detectors also may not sense a fire on another level or floor of a building. A second-floor detector, for example, may not sense a first-floor or basement fire.

Particles of combustion or “smoke” from a developing fire may not reach the sensing chambers of smoke detectors because:

- Barriers such as closed or partially closed doors, walls, chimneys, even wet or humid areas may inhibit particle or smoke flow.
- Smoke particles may become “cold,” stratify, and not reach the ceiling or upper walls where detectors are located.
- Smoke particles may be blown away from detectors by air outlets, such as air conditioning vents.
- Smoke particles may be drawn into air returns before reaching the detector.

The amount of “smoke” present may be insufficient to alarm smoke detectors. Smoke detectors are designed to alarm at various levels of smoke density. If such density levels are not created by a developing fire at the location of detectors, the detectors will not go into alarm.

Smoke detectors, even when working properly, have sensing limitations. Detectors that have photoelectronic sensing chambers tend to detect smoldering fires better than flaming fires, which have little visible smoke. Detectors that have ionizing-type sensing chambers tend to detect fast-flaming fires better than smoldering fires. Because fires develop in different ways and are often unpredictable in their growth, neither type of detector is necessarily best and a given type of detector may not provide adequate warning of a fire.

Smoke detectors cannot be expected to provide adequate warning of fires caused by arson, children playing with matches (especially in bedrooms), smoking in bed, and violent explosions (caused by escaping gas, improper storage of flammable materials, etc.).

Heat detectors do not sense particles of combustion and alarm only when heat on their sensors increases at a predetermined rate or reaches a predetermined level. Rate-of-rise heat detectors may be subject to reduced sensitivity over time. For this reason, the rate-of-rise feature of each detector should be tested at least once per year by a qualified fire protection specialist. Heat detectors are designed to protect property, not life.

IMPORTANT! Smoke detectors must be installed in the same room as the control panel and in rooms used by the system for the connection of alarm transmission wiring, communications, signaling, and/or power. If detectors are not so located, a developing fire may damage the alarm system, compromising its ability to report a fire.

Audible warning devices such as bells, horns, strobes, speakers and displays may not alert people if these devices are located on the other side of closed or partly open doors or are located on another floor of a building. Any warning device may fail to alert people with a disability or those who have recently consumed drugs, alcohol, or medication. Please note that:

- An emergency communication system may take priority over a fire alarm system in the event of a life safety emergency.
- Voice messaging systems must be designed to meet intelligibility requirements as defined by NFPA, local codes, and Authorities Having Jurisdiction (AHJ).
- Language and instructional requirements must be clearly disseminated on any local displays.
- Strobes can, under certain circumstances, cause seizures in people with conditions such as epilepsy.
- Studies have shown that certain people, even when they hear a fire alarm signal, do not respond to or comprehend the meaning of the signal. Audible devices, such as horns and bells, can have different tonal patterns and frequencies. It is the property owner's responsibility to conduct fire drills and other training exercises to make people aware of fire alarm signals and instruct them on the proper reaction to alarm signals.
- In rare instances, the sounding of a warning device can cause temporary or permanent hearing loss.

A **life safety system** will not operate without any electrical power. If AC power fails, the system will operate from standby batteries only for a specified time and only if the batteries have been properly maintained and replaced regularly.

Equipment used in the system may not be technically compatible with the control panel. It is essential to use only equipment listed for service with your control panel.

Telephone lines needed to transmit alarm signals from a premises to a central monitoring station may be out of service or temporarily disabled. For added protection against telephone line failure, backup radio transmission systems are recommended.

The most common cause of life safety system malfunction is inadequate maintenance. To keep the entire life safety system in excellent working order, ongoing maintenance is required per the manufacturer’s recommendations, and UL and NFPA standards. At a minimum, the requirements of NFPA 72 shall be followed. Environments with large amounts of dust, dirt, or high air velocity require more frequent maintenance. A maintenance agreement should be arranged through the local manufacturer's representative. Maintenance should be scheduled as required by National and/or local fire codes and should be performed by authorized professional life safety system installers only. Adequate written records of all inspections should be kept.

Limit-D2-2016
Installation Precautions

Adherence to the following will aid in problem-free installation with long-term reliability:

WARNING - Several different sources of power can be connected to the fire alarm control panel. Disconnect all sources of power before servicing. Control unit and associated equipment may be damaged by removing and/or inserting cards, modules, or interconnecting cables while the unit is energized. Do not attempt to install, service, or operate this unit until manuals are read and understood.

CAUTION - System Re-acceptance Test after Software Changes: To ensure proper system operation, this product must be tested in accordance with NFPA 72 after any programming operation or change in site-specific software. Re-acceptance testing is required after any change, addition or deletion of system components, or after any modification, repair or adjustment to system hardware or wiring. All components, circuits, system operations, or software functions known to be affected by a change must be 100% tested. In addition, to ensure that other operations are not inadvertently affected, at least 10% of initiating devices that are not directly affected by the change, up to a maximum of 50 devices, must also be tested and proper system operation verified.

This system meets NFPA requirements for operation at 0-49° C/32-120° F and at a relative humidity . However, the useful life of the system's standby batteries and the electronic components may be adversely affected by extreme temperature ranges and humidity. Therefore, it is recommended that this system and its peripherals be installed in an environment with a normal room temperature of 15-27° C/60-80° F.

Verify that wire sizes are adequate for all initiating and indicating device loops. Most devices cannot tolerate more than a 10% I.R. drop from the specified device voltage.

Like all solid state electronic devices, this system may operate erratically or can be damaged when subjected to lightning induced transients. Although no system is completely immune from lightning transients and interference, proper grounding will reduce susceptibility. Overhead or outside aerial wiring is not recommended, due to an increased susceptibility to nearby lightning strikes. Consult with the Technical Services Department if any problems are anticipated or encountered.

Disconnect AC power and batteries prior to removing or inserting circuit boards. Failure to do so can damage circuits.

Remove all electronic assemblies prior to any drilling, filing, reaming, or punching of the enclosure. When possible, make all cable entries from the sides or rear. Before making modifications, verify that they will not interfere with battery, transformer, or printed circuit board location.

Do not tighten screw terminals more than 9 in-lbs. Over-tightening may damage threads, resulting in reduced terminal contact pressure and difficulty with screw terminal removal.

This system contains static-sensitive components. Always ground yourself with a proper wrist strap before handling any circuits so that static charges are removed from the body. Use static suppressive packaging to protect electronic assemblies removed from the unit.

Follow the instructions in the installation, operating, and programming manuals. These instructions must be followed to avoid damage to the control panel and associated equipment. FACAP operation and reliability depend upon proper installation.

FCC Warning

WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause interference to radio communications. It has been tested and found to comply with the limits for class A computing devices pursuant to Subpart B of Part 15 of FCC Rules, which is designed to provide reasonable protection against such interference when devices are operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user will be required to correct the interference at his or her own expense.

Canadian Requirements

This digital apparatus does not exceed the Class A limits for radiation noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le present appareil numerique n’emet pas de bruits radioelectriques depassant les limites applicables aux appareils numeriques de la classe A prescrites dans le Reglement sur le brouillage radioelectrique edicte par le ministere des Communications du Canada.

LiteSpeed™ and Lite-Connect™ are trademarks; and Fire-Lite® Alarms, Honeywell®, and SWIFT® are registered trademarks of Honeywell International Inc. Microsoft® and Windows® are registered trademarks of the Microsoft Corporation. Chrome™ and Google™ are trademarks of Google Inc. Firefox® is a registered trademark of The Mozilla Foundation.

©2018 by Honeywell International Inc. All rights reserved. Unauthorized use of this document is strictly prohibited.
Software Downloads

In order to supply the latest features and functionality in fire alarm and life safety technology to our customers, we make frequent upgrades to the embedded software in our products. To ensure that you are installing and programming the latest features, we strongly recommend that you download the most current version of software for each product prior to commissioning any system. Contact Technical Support with any questions about software and the appropriate version for a specific application.

Documentation Feedback

Your feedback helps us keep our documentation up-to-date and accurate. If you have any comments or suggestions about our online Help or printed manuals, you can email us.

Please include the following information:

• Product name and version number (if applicable)
• Printed manual or online Help
• Topic Title (for online Help)
• Page number (for printed manual)
• Brief description of content you think should be improved or corrected
• Your suggestion for how to correct/improve documentation

Send email messages to:

FireSystems.TechPubs@honeywell.com

Please note this email address is for documentation feedback only. If you have any technical issues, please contact Technical Services.
Table of Contents

Section 3: Programming

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>User Programming</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Initial Power-up</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Programming Screens Description</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Programming and Passwords</td>
<td>52</td>
</tr>
<tr>
<td>3.5</td>
<td>Master Programming Level</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>3.5.1: Input Zones</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>3.5.2: NAC (Notification Appliance Circuit)</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>3.5.3: Relays</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3.5.4: System Setup</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3.5.5: Option Modules</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>3.5.6: History</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>3.5.7: Walktest</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>3.5.8: Clear Program</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>3.5.9: Password Change</td>
<td>93</td>
</tr>
<tr>
<td>3.6</td>
<td>Maintenance Programming Level</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>3.6.1: Input Zones - Enable/Disable</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>3.6.2: History</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>3.6.3: Walktest</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>3.6.4: Time-Date</td>
<td>95</td>
</tr>
</tbody>
</table>

Section 4: Operating Instructions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Panel Control Buttons</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>4.1.1: Acknowledge/Step</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>4.1.2: Alarm Silenced</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>4.1.3: Drill/Hold 2 Sec</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>4.1.4: Reset</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>LED Indicators</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>Normal Operation</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Trouble Operation</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>Alarm Operation</td>
<td>97</td>
</tr>
<tr>
<td>4.6</td>
<td>Supervisory Operation</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Process Monitor Operation</td>
<td>98</td>
</tr>
<tr>
<td>4.8</td>
<td>Hazard/Tornado Condition Operation</td>
<td>99</td>
</tr>
<tr>
<td>4.9</td>
<td>Medical Alert Condition Operation</td>
<td>99</td>
</tr>
<tr>
<td>4.10</td>
<td>Disable/Enable Operation</td>
<td>99</td>
</tr>
<tr>
<td>4.11</td>
<td>Waterflow Circuits Operation</td>
<td>99</td>
</tr>
<tr>
<td>4.12</td>
<td>Detector Functions</td>
<td>99</td>
</tr>
<tr>
<td>4.13</td>
<td>Time Functions: Real-Time Clock</td>
<td>100</td>
</tr>
<tr>
<td>4.14</td>
<td>Coded Operation</td>
<td>100</td>
</tr>
<tr>
<td>4.15</td>
<td>Presignal</td>
<td>100</td>
</tr>
<tr>
<td>4.16</td>
<td>Positive Alarm Sequence</td>
<td>100</td>
</tr>
</tbody>
</table>

MS-5UD & MS-10UD Series Manual — P/N 52626:C7 6/12/2018
It is imperative that the installer understand the requirements of the Authority Having Jurisdiction (AHJ) and be familiar with the standards set forth by the following regulatory agencies:

- Underwriters Laboratories/Underwriters Laboratories Canada
- National Fire Protection Association

Before proceeding, the installer should be familiar with the following documents.

NFPA Standards

This Fire Alarm Control Panel complies with the following NFPA Standards:

Underwriters Laboratories Documents for Reference:

- UL 38 Manually Actuated Signaling Boxes
- UL 217 Smoke Detectors, Single and Multiple Station
- UL 228 Door Closers–Holders for Fire Protective Signaling Systems
- UL 268 Smoke Detectors for Fire Protective Signaling Systems
- UL 268A Smoke Detectors for Duct Applications
- UL 346 Waterflow Indicators for Fire Protective Signaling Systems
- UL 464 Audible Signaling Appliances
- UL 521 Heat Detectors for Fire Protective Signaling Systems
- UL 864 Standard for Control Units for Fire Protective Signaling Systems
- UL 1481 Power Supplies for Fire Protective Signaling Systems
- UL 1638 Visual Signaling Appliances
- UL 1971 Signaling Devices for Hearing Impaired
- UL 2017 General-Purpose Signaling Devices and Systems

CAN/ULC - S524-01 Standard for Installation of Fire Alarm Systems

This Class (A) digital apparatus complies with Canadian ICES-003.

Other:

- Canadian Electrical Code, Part I
- NEC Article 250 Grounding
- NEC Article 300 Wiring Methods
- NEC Article 760 Fire Protective Signaling Systems
- Applicable Local and State Building Codes
- Requirements of the Local Authority Having Jurisdiction (LAHJ)

Fire•Lite Documents

- Fire•Lite Device Compatibility Document Document #15384
- CHG-120F Battery Charger Manual Document #50888
- CHG-75 Battery Charger Manual Document #51315
- 411UD Manual Document #50759
- 411UDAC Manual Document #51073
- ANN-80 Product Installation Doc. Document #52749
- ANN-(R)LED Product Installation Doc. Document #53032
- ANN-I/O Product Installation Doc. Document #151416
- ANN-RLY Product Installation Doc. Document #53033
- ANN-S/PG Product Installation Doc. Document #151417
- ACC-25/50 Series Audio Panel Document #51889

This product has been certified to comply with the requirements in the Standard for Control Units and Accessories for Fire Alarm Systems, UL 864, 9th Edition. Operation of this product with products not tested for UL 864, 9th Edition has not been evaluated. Such operation requires the approval of the local Authority Having Jurisdiction (AHJ).
Basic System Connections
5-Zone Panel

Notes:
1. MS-5UD-3(E) = 2.5 amps max. per NAC
2. MS-5UD-7(C/E) = 3 amps max. per NAC
3. 18 Amp Hour max. for MS-5UD-3(E)
 26 Amp Hour max. for MS-5UD-7(E)
 18 Amp Hour max. for MS-5UD-7C

Important! Removing Ground Fault Disable Jumper JP43 voids UL/NFPA Style/Class Indentifications for circuits. Remove jumper JP43 only with the approval of the local AHJ (Authority Having Jurisdiction).

Special Application
DC Power Outputs 24 VDC)
- Nonsupervised, power-limited circuits
- Supervise with a power supervision relay EOLR-1
- Resettable Power - 24 VDC filtered, power-limited (0.5 amp maximum) to smoke detectors (IDC). Supervision required.
- Nonresettable or Resettable Power: Jumper selectable by JP31, 24 VDC filtered, power-limited (0.5 amp maximum). Supervision required. Nonresettable Power suitable for powering smoke detectors.
- Configure TB9, Terminals 1 & 2 as Resettable or Nonresettable Power:
 - Resettable Power - jumper JP31 pins 2 & 3
 - Nonresettable Power - jumper JP31 pins 1 & 2 (as shown)

For more specific UL wiring information, refer to page 29.

Power Supply Connector

Battery (see note 3)
- 24 VDC, supervised, non-power-limited

Notification Appliance Circuits (see note 1)
- Special Application Power
- NAC #1, #2, #3, & #4, Style Y (Class B) (Supervised, Power-Limited) (See Style Z illustrated near right edge of board.)
 4.7K ohm, ½ watt End-of-Line Resistor
 PN 71252

Initiating Device Circuits
- Special Application Power
- IDCs 1 through 5, Style B (Class B) (Supervised, Power-Limited) (See Style D illustrated near right edge of board.)
 4.7K ohm, ½ watt End-of-Line Resistor
 PN 71252

Remote Synchronization Output (see note 2)
- Special Application Power
- 24 VDC filtered, supervised, and power-limited, 0.040 amp maximum. Requires 4.7K ohm EOLR.

Class A Converter Module
- Remove jumper JP43 to disable Ground Fault Detection circuit (only with approval of AHJ)
- Cut this jumper to supervise the 4XTMF module when installed (see J4 & J5)
- Cut this jumper to enable Supervisory Relay when 4XTMF module is installed
- Auxiliary Trouble Input
- USB port for local programming using a personal computer and PK-5X Utility

3 Programmable Relays
- Nonresettable relay contacts
- Contact Ratings
 - 2.0 amp @ 30 VDC (resistive)
 - 0.5 amp @ 30 VAC (resistive)
- Contacts shown below in normal condition (AC power with no alarm, trouble, or supervisory activity)
- (*Factory default relay programming)

A Fail Safe Trouble relay switches to the NC position during trouble conditions and under loss of all power.

Notes:
1. MS-5UD-3(E) = 2.5 amps max. per NAC
2. MS-5UD-7(C/E) = 3 amps max. per NAC
3. 18 Amp Hour max. for MS-5UD-3(E)
 26 Amp Hour max. for MS-5UD-7(E)
 18 Amp Hour max. for MS-5UD-7C

Important! Removing Ground Fault Disable Jumper JP43 voids UL/NFPA Style/Class Indentifications for circuits. Remove jumper JP43 only with the approval of the local AHJ (Authority Having Jurisdiction).

Special Application
Power
- NAC #1, #2, #3, & #4, Style Y (Class B) (Supervised, Power-Limited) (See Style Z illustrated near right edge of board.)
 4.7K ohm, ½ watt End-of-Line Resistor
 PN 71252

5. Style Z (Class A) NAC
6. Style D (Class A) IDC

Initiating Device Circuits
- Special Application Power
- IDCs 1 through 5, Style B (Class B) (Supervised, Power-Limited) (See Style D illustrated near right edge of board.)
 4.7K ohm, ½ watt End-of-Line Resistor
 PN 71252

Remote Synchronization Output (see note 2)
- Special Application Power
- 24 VDC filtered, supervised, and power-limited, 0.040 amp maximum. Requires 4.7K ohm EOLR.

Contact Ratings
- 2.0 amps @ 30 VDC (resistive)
- 0.5 amp @ 30 VAC (resistive)
- Contacts shown below in normal condition (AC power with no alarm, trouble, or supervisory activity)
- (*Factory default relay programming)

A Fail Safe Trouble relay switches to the NC position during trouble conditions and under loss of all power.

Notes:
1. MS-5UD-3(E) = 2.5 amps max. per NAC
2. MS-5UD-7(C/E) = 3 amps max. per NAC
3. 18 Amp Hour max. for MS-5UD-3(E)
 26 Amp Hour max. for MS-5UD-7(E)
 18 Amp Hour max. for MS-5UD-7C

Important! Removing Ground Fault Disable Jumper JP43 voids UL/NFPA Style/Class Indentifications for circuits. Remove jumper JP43 only with the approval of the local AHJ (Authority Having Jurisdiction).

Special Application
Power
- NAC #1, #2, #3, & #4, Style Y (Class B) (Supervised, Power-Limited) (See Style Z illustrated near right edge of board.)
 4.7K ohm, ½ watt End-of-Line Resistor
 PN 71252

5. Style Z (Class A) NAC
6. Style D (Class A) IDC
Basic System Connections
10-Zone Panel

Notes:
1. MS-10UD-3(E) = 2.5 amps max. per NAC
2. Remote Sync Output is required only for the MS-10UD-3(E); refer to "Remote Synchronization Output" on page 28.
3. 18 Amp Hour max. for MS-10UD-3(E) 26 Amp Hour max. for MS-10UD-7(E) 18 Amp Hour max. for MS-10UD-7C

Important! Removing Ground Fault Disable Jumper JP43 voids UL/NFPA Style/Class indentifications for circuits. Remove jumper JP43 only with the approval of the local AHJ (Authority Having Jurisdiction).

Special Application
DC Power Outputs 24 VDC
Nonsupervised, power-limited circuits Supervise with a power supervision relay EOLR-1

Resettable Power - 24 VDC filtered, power-limited (0.5 amp maximum) to smoke detectors (IDC). Supervision required.
Nonresettable or Resettable Power Jumper selectable by JP31, 24 VDC filtered, power-limited (0.5 amp maximum); Supervision required. Nonresettable Power suitable for powering smoke detectors. Configure TB9, Terminals 1 & 2 as Resettable or Nonresettable Power.
• Resettable Power - jumper JP31 pins 2 & 3
• Nonresettable Power - jumper JP31 pins 1 & 2 (as shown)

For more specific UL wiring information, refer to page 29.

Power Supply Connector

Battery (see note 3)
24 VDC, supervised, non-power-limited

Notification Appliance Circuits (see note 1)
Special Application Power
NAC #1, #2, #3, & #4, Style Y (Class B) (Supervised, Power-Limited) (See Style Z illustrated near right edge of board.) 4.7Kohm, ½ watt End-of-Line Resistor PN 71252

Initiating Device Circuits
Special Application Power
NAC #1 through 5, Style B (Class B) (Supervised, Power-Limited) (See Style D illustrated near right edge of board.) 4.7Kohm, ½ watt End-of-Line Resistor PN 71252

Remote Synchronization Output
(see note 2)
Special Application Power
24V DC filtered, supervised, and power-limited 0.040 amp maximum. Requires 4.7K ohm EOLR.

3 Programmable Relays
Nonresettable relay contacts Contact Ratings:
2.0 amps @ 30 VDC (resistive)
0.5 amp @ 30 VAC (resistive)
Contacts shown below in normal condition (AC power with no alarm, trouble, or supervisory activity)
A Fail Safe Trouble relay switches to the NC position during trouble conditions and under loss of all power.
(Factory default relay programming)
Alarm* Trouble* Supervisory*

Remote Synchronization Output
(see note 2)
Special Application Power
24V DC filtered, supervised, and power-limited 0.040 amp maximum. Requires 4.7K ohm EOLR.

3 Programmable Relays
Nonresettable relay contacts Contact Ratings:
2.0 amps @ 30 VDC (resistive)
0.5 amp @ 30 VAC (resistive)
Contacts shown below in normal condition (AC power with no alarm, trouble, or supervisory activity)
A Fail Safe Trouble relay switches to the NC position during trouble conditions and under loss of all power.
(Factory default relay programming)
Alarm* Trouble* Supervisory*

Power Supply Connector

Battery (see note 3)
24 VDC, supervised, non-power-limited

Notification Appliance Circuits (see note 1)
Special Application Power
NAC #1, #2, #3, & #4, Style Y (Class B) (Supervised, Power-Limited) (See Style Z illustrated near right edge of board.) 4.7Kohm, ½ watt End-of-Line Resistor PN 71252

Initiating Device Circuits
Special Application Power
NAC #1 through 5, Style B (Class B) (Supervised, Power-Limited) (See Style D illustrated near right edge of board.) 4.7Kohm, ½ watt End-of-Line Resistor PN 71252

Remote Synchronization Output
(see note 2)
Special Application Power
24V DC filtered, supervised, and power-limited 0.040 amp maximum. Requires 4.7K ohm EOLR.

3 Programmable Relays
Nonresettable relay contacts Contact Ratings:
2.0 amps @ 30 VDC (resistive)
0.5 amp @ 30 VAC (resistive)
Contacts shown below in normal condition (AC power with no alarm, trouble, or supervisory activity)
A Fail Safe Trouble relay switches to the NC position during trouble conditions and under loss of all power.
(Factory default relay programming)
Alarm* Trouble* Supervisory*

Power Supply Connector

Battery (see note 3)
24 VDC, supervised, non-power-limited

Notification Appliance Circuits (see note 1)
Special Application Power
NAC #1, #2, #3, & #4, Style Y (Class B) (Supervised, Power-Limited) (See Style Z illustrated near right edge of board.) 4.7Kohm, ½ watt End-of-Line Resistor PN 71252

Initiating Device Circuits
Special Application Power
NAC #1 through 5, Style B (Class B) (Supervised, Power-Limited) (See Style D illustrated near right edge of board.) 4.7Kohm, ½ watt End-of-Line Resistor PN 71252

Remote Synchronization Output
(see note 2)
Special Application Power
24V DC filtered, supervised, and power-limited 0.040 amp maximum. Requires 4.7K ohm EOLR.
Section 1: Product Description

The MS-5UD is a five zone FACP (Fire Alarm Control Panel) and the MS-10UD is a ten zone FACP. The information in this manual refers to both the MS-5UD and MS-10UD unless otherwise specified. The combination control and digital communicator panels provide reliable fire signaling protection for small to medium sized commercial, industrial and institutional buildings. The FACP is compatible with System Sensor’s i3 detectors which are conventional smoke detectors that can transmit a maintenance trouble signal to the FACP indicating the need for cleaning and a supervisory ‘freeze’ signal when the ambient temperature falls below the detector rating of approximately 45° F (refer to System Sensor i3 Installation and Maintenance Instructions). In addition, the control panel is compatible with conventional input devices such as two-wire smoke detectors, four-wire smoke detectors, pull stations, waterflow devices, tamper switches and other normally-open contact devices. Refer to the Fire•Lite Device Compatibility Document for a complete listing of compatible devices.

Outputs include four NACs (Notification Appliance Circuits), three programmable Form-C relays (factory programmed for Alarm, Trouble and Supervisory) and 24 VDC special application resettable and nonresettable power outputs. The FACP supervises all wiring, AC voltage, battery level and telephone line integrity. Available accessories include local and remote upload/download software, remote annunciators and reverse polarity/city box transmitter.

The integral DACT transmits system status (alarms, troubles, AC loss, etc.) to a Central Station via the public switched telephone network. It also allows remote programming or interrogation of the control panel using the PS-Tools Upload/Download utility via the public switched telephone network. Local programming interrogation is also possible using the PS-Tools and the USB port on the FACP. Any personal computer with Windows® XP or newer, compatible modem with a speed of 2400 baud and PS-Tools may serve as a Service Terminal. This allows download of the entire program or upload of the entire program, history file, walktest data and current status.

Activation of a compatible smoke detector or any normally-open fire alarm initiating device will activate audible and visual signaling devices, illuminate an indicating LED, display alarm information on the panel’s LCD, sound the piezo sounder at the FACP, activate the FACP alarm relay and operate an optional module used to notify a remote station or initiate an auxiliary control function.

The following versions of the MS-5UD and MS-10UD are available:

<table>
<thead>
<tr>
<th>FACP Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-5UD-3</td>
<td>Five Zone Panel: 120 VAC with FLPS-3 power supply providing 3.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-5UD-7</td>
<td>Five Zone Panel: 120 VAC with FLPS-7 power supply providing 7.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-5UD-7C</td>
<td>Five Zone Panel: 120 VAC with FLPS-7 power supply providing 7.0 amps total 24 VDC output current. Includes built-in ANN-LED Annunciator. This panel is approved for Canadian applications</td>
</tr>
<tr>
<td>MS-5UD-3E</td>
<td>Five Zone Panel: 240 VAC with FLPS-3 power supply providing 3.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-5UD-7E</td>
<td>Five Zone Panel: 240 VAC with FLPS-7 power supply providing 7.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-10UD-3</td>
<td>Ten Zone Panel: 120 VAC with FLPS-3 power supply providing 3.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-10UD-3E</td>
<td>Ten Zone Panel: 240 VAC with FLPS-3 power supply providing 3.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-10UD-7</td>
<td>Ten Zone Panel: 120 VAC with FLPS-7 power supply providing 7.0 amps total 24 VDC output current</td>
</tr>
<tr>
<td>MS-10UD-7C</td>
<td>Ten Zone Panel: 120 VAC with FLPS-7 power supply providing 7.0 amps total 24 VDC output current. Includes built-in ANN-LED Annunciator. This panel is approved for Canadian applications.</td>
</tr>
<tr>
<td>MS-10UD-7E</td>
<td>Ten Zone Panel: 240 VAC with FLPS-7 power supply providing 7.0 amps total 24 VDC output current</td>
</tr>
</tbody>
</table>

NOTE: Unless otherwise specified, the information in this manual applies to all versions of the panels.

1.1 Product Features

- Built-in DACT (Digital Alarm Communicator/Transmitter)
- Style B (Class B) IDC (Initiating Device Circuit)
 - MS-5UD - five programmable IDCs
 - MS-10UD - ten programmable IDCs
- Four Style Y (Class B) NAC (Notification Appliance Circuit) - special application power
- Three programmable Form-C relays
- Built-in Programmer
- Touchtone/ Rotary dialing
- Programmable Make/Break Ratio
- Optional Dress Panel: DP-51050
- A modified Dress Panel is provided standard with Canadian models: includes an ANN-LED Annunciator module
- Optional Trim Ring TR-CE (red) for semi-flush mounting the cabinet
- ANN-BUS for connection to optional:
 - ANN-80 Remote LCD Annunciator
 - ANN-I/O LED Driver
 - ANN-S/PG Printer Module
 - ANN-RLY Relay Module
 - ANN-LED Annunciator Module
Specifications

Product Description

- 80-character LCD display (backlit)
- Real-time clock/calendar with daylight savings time control
- History log with 256 event storage
- Control Buttons
 - ACK (Acknowledge)
 - Alarm Silence
 - System Reset/Lamp Test
 - Drill
- LED Indicators
 - Fire Alarm
 - Supervisory
 - Trouble
 - AC Power
 - Alarm Silence
 - Primary and Secondary Phone Line Active LEDs
- Piezo sounder for alarm, trouble and supervisory
- 24 volt operation
- Low AC voltage sense
- Alarm Verification
- NACs Programmable for:
 - Silence Inhibit
 - Auto-Silence
 - Strobe Synchronization (System Sensor, Wheelock, Gentex, Faraday, Amseco)
 - Selective Silence (horn-strobe mute)
 - Temporal or Steady Signal
 - Silenceable or Nonsilenceable
- Automatic battery charger with charger supervision
- Silent or audible walktest capabilities
- Optional PK-CD (contains PS-Tools utility) for local or remote Upload/Download of program and data
- Optional CAC-5X Class A Converter Module for NACs and IDCs
- Optional 4XTMF Transmitter Module
- Optional ANN-SEC card for a secondary ANN-BUS

1.2 Specifications

| AC Power |
|-----------------|-----------------|
| MS-5UD-3 (FLPS-3 Power Supply): 120 VAC, 60 HZ, 1.00 amps |
| MS-5UD-7 (FLPS-7 Power Supply): 120 VAC, 60 HZ, 3.90 amps |
| MS-5UD-7C (FLPS-7 Power Supply): 120 VAC, 60 HZ, 3.90 amps |
| MS-10UD-3 (FLPS-3 Power Supply): 120 VAC, 60 HZ, 1.00 amps |
| MS-10UD-7 (FLPS-7 Power Supply): 120 VAC, 60 HZ, 3.90 amps |
| MS-10UD-7C (FLPS-7 Power Supply): 120 VAC, 60 HZ, 3.90 amps |
| MS-5UD-3E (FLPS-3 Power Supply): 240 VAC, 50 HZ, 0.54 amps |
| MS-5UD-7E (FLPS-7 Power Supply): 240 VAC, 50 HZ, 2.20 amps |
| MS-10UD-3E (FLPS-3 Power Supply): 240 VAC, 50 HZ, 0.54 amps |
| MS-10UD-7E (FLPS-7 Power Supply): 240 VAC, 50 HZ, 2.20 amps |

Wire size: minimum #14 AWG (2.0 mm²) with 600V insulation

Supervised, nonpower-limited

Battery (sealed lead acid only) - J12

Maximum Charging Circuit - Normal Flat Charge: 27.6 VDC @ 1.4 amp

Supervised, nonpower-limited

Maximum Charger Capacity: 18 Amp Hour battery for MS-5UD-3(E), MS-5UD-7C, MS-10UD-3(E), and MS-10UD-7C, and 26 Amp Hour battery for MS-5UD-7(E) and MS-10UD-7(E) [two 18 Amp Hour batteries can be housed in FACP cabinet. Larger batteries require a separate battery box such as the BB-26 or BB-55F and the CHG-75 or CHG-120F Battery Charger.]

Minimum Battery Size: 7 Amp Hour (12 Amp Hour for MS-5UD-7C & MS-10UD-7C)

Initiating Device Circuits - TB4 (and TB6 on MS-10UD only)

Alarm Zones 1 - 5 on TB 4 (MS-5UD and MS-10UD)

Alarm Zones 6 - 10 on TB6 (MS-10UD only)

Supervised and power-limited circuitry

Operation: All zones Style B (Class B)
Normal Operating Voltage: Nominal 20 VDC
Alarm Current: 15 mA minimum
Short Circuit Current: 40 mA max.
Maximum Loop Resistance: 100 ohms (700 ohms per zone for linear heat detection - See Section 2.3, “Input Circuits” for more information.)
End-of-Line Resistor: 4.7KΩ, 1/2 watt (Part #71252)
Standby Current: 2 mA
Refer to the Fire•Lite Device Compatibility Document for listed compatible devices

Notification Appliance Circuit(s) - TB5 and TB7

Four NACs
Operation: Style Y (Class B)
Special Application power
Supervised and power-limited circuitry
Normal Operating Voltage: Nominal 24 VDC
Maximum Signaling Current: 3.0 amps for MS-5UD-3(E), MS-10UD-3(E) (2.5 amp special application, 250 mA regulated maximum per NAC); 7.0 amps for MS-5UD-7(E), MS-10UD-7(E) (3.0 amps special application, 300 mA regulated maximum per NAC)
End-of-Line Resistor: 4.7KΩ, 1/2 watt (Part #71252)
Refer to the Fire•Lite Device Compatibility Document for compatible listed devices

Form-C Relays - Programmable - TB8

Relay 1 (factory default programmed as Alarm Relay)
Relay 2 (factory default programmed as fail-safe Trouble Relay)
Relay 3 (factory default programmed as Supervisory Relay)
Relay Contact Ratings: 2 amps @ 30 VDC (resistive), 0.5 amps @ 30 VAC (resistive)

Special Application Resettable Power - TB9

Operating Voltage: Nominal 24 VDC
Maximum Available Current: 500 mA - appropriate for powering 4-wire smoke detectors
Power-limited Circuitry
Refer to the Fire•Lite Device Compatibility Document for compatible listed devices

Special Application Resettable or Nonresettable Power - TB9

Operating Voltage: Nominal 24 VDC
Maximum Available Current: 500 mA
Power-limited Circuitry
Jumper selectable by JP31 for resettable or nonresettable power:

- ✓ Jumper pins 1 & 2 on JP31 for nonresettable power
- ✓ Jumper pins 2 & 3 on JP31 for resettable power

Refer to the Fire•Lite Device Compatibility Document for compatible listed devices

Special Application Primary ANN-BUS Power - TB3

Operating voltage: Nominal 24 VDC
Maximum Available Current: 500mA
Power-limited circuit

Special Application Secondary ANN-BUS Power - ANN-SEC - TB1

Operating voltage: Nominal 24 VDC
Maximum Available Current: 500mA
Power-limited circuit

Remote Sync Output - TB2

Remote power supply synchronization output, only required for the MS-5UD-3(E), MS-10UD-3(E) (refer to “Remote Synchronization Output” on page 28)
24 VDC nominal special application power
Maximum current is 40 mA
End-of-Line Resistor: 4.7KΩ
Supervised and power-limited circuit

Auxiliary Trouble Input - J6
The Auxiliary Trouble Input is an open collector circuit which can be used to monitor an external device for trouble conditions. It can be connected to the trouble bus of a peripheral, such as a power supply, which is compatible with open collector circuits.
All connections must be in conduit, less than 20 ft. (610 cm) in length in the same room.
The following figure illustrates the maximum current that is possible for each major panel output circuit and the total current available from the FACP with the FLPS-3 power supply. This applies to the MS-5UD-3, MS-10UD-3, MS-5UD-3E, and MS-10UD-3E.

Refer to the battery calculations section for additional information.

Figure 1.1 Current Availability with FACP and FLPS-3 Power Supply
The following figure illustrates the maximum current that is possible for each major panel output circuit and the total current available from the FACP with the FLPS-7 power supply. This applies to the MS-5UD-7, MS-5UD-7C, MS-10UD-7, MS-10UD-7C, MS-5UD-7E, and MS-10UD-7E.

Refer to the battery calculations section for additional information.

Figure 1.2 Current Availability with FACP and FLPS-7 Power Supply
1.3 Controls and Indicators

LCD Display
The FACP uses an 80-character (4 lines X 20 characters) high viewing angle LCD display. The display includes a long life LED backlight that remains illuminated. If AC power is lost and the system is not in alarm, the LED backlight will turn off to conserve batteries.

Key Panel
Mounted on the main circuit board, the key panel includes a window for the LCD display and LED indicators as listed above. The key panel, which is visible with the cabinet door closed, has 25 keys, including a 16 key alpha-numeric pad similar to a telephone keypad.

Function keys:
- Acknowledge/Step
- Alarm Silence
- Drill
- System Reset (lamp test)

Service/program keys:
- Keys labeled 1 to 9
- * key
- # key
- 0 (recall) key
- 1st Event key
- Clear key
- Escape key
- Mode key
- Four cursor keys (up, down, left and right)
- Enter key

LED Indicators
LEDs are provided to annunciate the following conditions:
- Fire Alarm - red LED
- Supervisory - yellow LED
- AC Power - green LED
- System Trouble - yellow LED
- Alarm Silence - yellow LED
- Primary Phone Line Active (on circuit board) - red LED
- Secondary Phone Line Active (on circuit board) - red LED
- Kiss-off (on circuit board) - green LED

Local Piezo Sounder
A piezo sounder provides separate and distinct sounds for alarm, trouble, maintenance, process monitor and supervisory conditions as follows:
- Alarm - on steady
- Trouble - pulse 1 second on and 1 second off
- Maintenance - pulse 1 second on and 1 second off
- Supervisory - pulse ½ second on and ½ second off
- Process Monitor - pulse ¼ second on and ¼ second off

1.4 Digital Alarm Communicator/Transmitter
Two modular phone jacks allow easy connection to telephone lines. Modular jacks are labeled PH1 for Primary Phone Line and PH2 for Secondary Phone Line. Two telephone line active red LEDs are provided as well as a green Kissoff LED. The integral digital communicator provides the following functions:
- Line Seizure: takes control of the phone lines disconnecting any premises phones
- Off/On Hook: performs on and off-hook status to the phone lines
- Listen for dial tone: 440 Hz tone typical in most networks
- Dialing the Central Station(s) number: default is Touch-Tone®, programmable to rotary
- For tone burst or touchtone type formats: discern proper Ack and Kissoff tone(s). The frequency and time duration of the tone(s) varies with the transmission format. The control panel will adjust accordingly.
- Communicate in the following formats:
 - Ademco Contact ID
 - SIA-DCS-8
 - SIA-DCS-20
1.5 Components

Main Circuit Board
The main circuit board contains the system’s CPU, DACT and other primary components and wiring interface connectors. Optional modules plug in and are mounted to the main circuit board.

Power Supply
One power supply is provided standard with each FACP, mounted to a chassis.
- FLPS-3 for the MS-5UD-3(E), MS-10UD-3(E)
- FLPS-7 for the MS-5UD-7(C/E), MS-10UD-7(C/E)

Cabinet
The backbox measures 16.65” (42.29 cm) x 19.0” (48.26 cm) x 5.207” (13.23 cm) and provides space for two batteries (up to 18 Amp Hours). Also available are an optional dress panel (DP-51050) which mounts inside the cabinet and trim-ring (TR-CE). The Canadian version is supplied standard with a modified dress panel and one ANN-LED annunciator module.

Batteries
The cabinet provides space for two 18 Amp Hour batteries (larger batteries require use of a UL listed battery box such as the BB-26 or BB-55). Batteries must be ordered separately.

1.6 Optional Modules and Accessories

CAC-5X Class A Converter Module
The CAC-5X Module can be used to convert the Style B (Class B) Initiating Device Circuits to Style D (Class A) and Style Y (Class B) Notification Appliance Circuits to Style Z (Class A). The module connects to J2 on the MS-5UD and MS-10UD main circuit board and to J7 on the MS-10UD. Note that two Class A Converter modules are required for the 10 zone panel.

4XTMF Transmitter Module
The 4XTMF provides a supervised output for local energy municipal box transmitter and alarm and trouble reverse polarity. It includes a disable switch and disable trouble LED. A module jumper option allows the reverse polarity circuit to open with a system trouble condition if no alarm condition exists. The 4XTMF mounts to the main circuit board connectors J4 & J5.

ANN-80 LCD Annunciator
The ANN-80 is a remote LCD annunciator which mimics the information displayed on the FACP LCD display and provides remote RESET, SILENCE, ACKNOWLEDGE, and DRILL.

ANN-80C LCD Indicator (Canadian applications)
The ANN-80C is a remote LCD indicator which mimics the information displayed on the FACP LCD display but does not allow remote control of the FACP.

ANN-LED Annunciator Module
The ANN-LED Annunciator Module provides three LEDs for each zone: Alarm, Trouble and Supervisory. ANN-LED module is installed in dress panel for Canadian version.

ANN-RLY Relay Module
The ANN-RLY Module, which can be mounted inside the cabinet, provides 10 Form-C relays.

ANN-S/PG Serial/Parallel Printer Gateway
The ANN-S/PG module provides a connection for a serial or parallel printer.

ANN-I/O LED Driver Module
The ANN-I/O module provides connections to a user supplied graphic annunciator.

ANN-SEC Secondary ANN-BUS Module
The ANN-SEC module provides another ANN-BUS port for more wiring flexibility and for Canadian applications requiring remote annunciation.

DP-51050 Dress Panel
A dress panel DP-51050 is available as an option. The dress panel restricts access to the system wiring while allowing access to the membrane switch panel. The Canadian version is supplied standard with a modified dress panel.

TR-CE Trim-ring
A trim-ring TR-CE is available as an option. The trim-ring allows semi-flush mounting of the cabinet.

Battery Box
The BB-26 or BB-55F battery box may be used to house two batteries greater than 18 Amp Hour. The battery box mounts directly below the control panel cabinet, centered to the main circuit board.
Battery Charger

CHG-75 Battery Charger

The CHG-75 is capable of charging up to 75 AH lead-acid batteries with the FACP. The FACP battery charger must be disabled, through software programming, when using the CHG-75. The charger and up to 26 AH batteries can be housed in the BB-26 battery box. Larger batteries and the charger can be housed in the BB-55F battery box which can be mounted up to 20 feet away from the control panel. Refer to the CHG-75 Manual for additional information.

CHG-120F Battery Charger

The CHG-120F is capable of charging up to 120 AH lead-acid batteries with the FACP. The FACP battery charger must be disabled, through software programming, when using the CHG-120F. The batteries and charger can be housed in the BB-55F battery box which can be mounted up to 20 feet away from the control panel. Note that when using a BB-55F for housing the charger and batteries greater than 26AH, multiple BB-55Fs are required. Refer to the CHG-120F Manual for additional information.

PS-Tools Programming Utility

The PS-Tools Programming Utility can be used to locally or remotely program the FACP directly from most IBM compatible personal computers (PC), running Windows® XP (or newer). FACP program files can also be created and stored on the PC and then downloaded later to the control panel. The P/N: PK-CD includes the Windows-based Programming Utility software on CD-ROM with on-line help file. A standard USB cable with male-A to male-B connectors, which must be purchased separately, is required for local connection of the PC to the USB port J11 on the FACP main circuit board. Remote programming requires that the PC have a 2400 baud (or faster) modem.

Important: Remote modification of FACP programming requires that the panel be enabled for remote download (refer to “Remote Download” on page 108). Remote interrogation of panel programming, history logs, detector status, etc., is possible without enabling the remote download option.

1.7 Telephone Requirements and Warnings

1.7.1 Telephone Circuitry

- Ringer Equivalence Number (REN) = 0.0B
- AC Impedance: 10.0 Mega Ohm
- Complies with FCC Part 68
- Mates with RJ31X Male Connector
- Supervision Threshold: loss of phone line voltage for 2 minutes

The REN is used to determine the quantity of devices which may be connected to the telephone line. Excessive RENs on the telephone line may result in the devices not ringing in response to an incoming call. In most, but not all areas, the sum of the RENs should not exceed five (5.0). To be certain of the number of devices that may be connected to the line as determined by the total RENs, contact the telephone company to determine the maximum REN for the calling area.

1.7.2 Digital Communicator

Before connecting the control panel to the public switched telephone network, the installation of two RJ31X jacks is necessary. If trouble is experienced with this equipment, for repair or warranty information, please contact:

Manufacturer: Fire•Lite Alarms
One Fire-Lite Place
Northford, CT 06472
(203) 484-7161

Product Model Number: MS-5UD/MS-10UD
FCC Registration Number: 1W6AL00B10UD
Ringer Equivalence: 0.0B

Important! The DACT must not be used to dial a phone number that is call-forwarded.

This equipment complies with Part 68 of the FCC rules and the requirements adopted by the ACTA. On the inside of the FACP door is a label that contains, among other information, a product identifier in the format US:AAAEQ##TXXXX. If requested, this number must be provided to the telephone company.

Alarm dialing equipment must be able to seize the telephone line and place a call in an emergency situation. It must be able to do this even if other equipment (telephone, answering system, computer modem, etc.) already has the telephone line in use. To do so, alarm dialing equipment must be connected to a properly installed RJ31X jack that is electrically in series with and ahead of all other equipment attached to the same telephone line. If there are any questions concerning these instructions, consult the telephone company or a qualified installer about installing the RJ31X jack and alarm dialing equipment. Refer to “Digital Communicator” on page 30 for an illustration of the proper installation of this equipment.

1.7.3 Telephone Company Rights and Warnings

The telephone company, under certain circumstances, may temporarily discontinue services and/or make changes in its facilities, services, equipment or procedures which may affect the operation of this control panel. However, the telephone company is required to give advance notice of such changes or interruptions.
If the control panel causes harm to the telephone network, the telephone company reserves the right to temporarily discontinue service. Advance notification will be provided except in cases when advance notice is not practical. In such cases, notification will be provided as soon as possible. The opportunity will be given to correct any problems and to file a complaint with the FCC if you believe it is necessary.

DO NOT CONNECT THIS PRODUCT TO COIN TELEPHONE, GROUND START, OR PARTY LINE SERVICES.

When the control panel activates, premise phones will be disconnected.

Two separate phone lines are required. Do not connect both telephone interfaces to the same telephone line.

The control panel must be connected to the public switched telephone network upstream (as first device) of any private telephone system at the protected premises.

A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by ACTA. This equipment is designed to be connected to the telephone network or premises wiring using a compliant RJ31X male modular plug and compatible modular jack that is also compliant.

1.7.4 For Canadian Applications

The following is excerpted from CP-01 Issue 5:

NOTICE: The Industry Canada (IC) label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational and safety requirements as prescribed in the appropriate Terminal Equipment Technical Requirements document(s). The Department does not guarantee the equipment will operate to the users’s satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure, for their own protection, that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

CAUTION

Users should not attempt to make such connections themselves, but should contact the appropriate electric inspections authority, or electrician.

“The Ringer Equivalence Number (REN) assigned to each terminal device provides an indication of the maximum number of terminals allowed to be connected to a telephone interface. The termination of an interface may consist of any combination of devices subject only to the requirement that the sum of the REN of all devices does not exceed 5.”

DOC Compliance - “This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.”

Representative: NOTIFIER/FIRE-LITE, CANADA 10 Whitmore Road Woodbridge, Ontario L4L7Z4 Phone: (905) 856-8733 FAX: (905) 856-9687

IC Certificate Number: 2132A-10UD

Ringer Equivalence Number (REN): 0.0B

Load Number: 2
Section 2: Installation

The cabinet can be surface mounted or semi-flush mounted. The door is removable during the installation period by opening and lifting it off the hinges. The cabinet mounts using two key slots at the top of the backbox and two additional securing holes located at the bottom.

Carefully unpack the system and check for shipping damage. Mount the cabinet in a clean, dry, vibration-free area where extreme temperatures are not encountered. The area should be readily accessible with sufficient room to easily install and maintain the panel. Locate the top of the cabinet approximately 5 feet (1.5 m) above the floor with the hinge mounting on the left. Determine the number of conductors required for the devices to be installed. Sufficient knockouts are provided for wiring convenience. Select the appropriate knockout(s) and pull the conductors into the box. All wiring should be in accordance with the National and/or Local codes for fire alarm systems.

2.1 Backbox Mounting

CAUTION: STATIC SENSITIVE COMPONENTS

THE CIRCUIT BOARD CONTAINS STATIC-SENSITIVE COMPONENTS. ALWAYS GROUND YOURSELF WITH A PROPER WRIST STRAP BEFORE HANDLING ANY BOARDS SO THAT STATIC CHARGES ARE REMOVED FROM THE BODY. USE STATIC SUPPRESSIVE PACKAGING TO PROTECT ELECTRONIC ASSEMBLIES.

To prevent damage to the circuit board and to facilitate backbox mounting, the chassis with main circuit board and transformer can be easily removed. Loosen the two 3/8” nuts securing the top flanges of the chassis, then slide the chassis up to free it from the lower tabs. Place the chassis assembly in a protective anti-static bag in a safe location until it can be reinstalled in the backbox.

1. Mark and predrill hole in the wall for the center top keyhole mounting bolt using the dimensions illustrated in Figure 2.2 on page 22.
2. Install center top fastener in the wall with the screw head protruding.
3. Place backbox over the top screw, level and secure.
4. Mark and drill the left and right upper and lower mounting holes.
 Note: outer holes (closest to sidewall) are used for 16” O.C. stud mounting.
5. Install remaining fasteners and tighten.

![Figure 2.1 Chassis Mounting in Backbox](image-url)
Figure 2.2 Cabinet Dimensions

Semi-Flush Mounting

Do not recess box more than 3.875" into wall to avoid covering venting holes on top of box.
2.2 Operating Power

WARNING: RISK OF ELECTRICAL SHOCK AND/OR EQUIPMENT DAMAGE

Several different sources of power can be connected to this panel. Disconnect all sources of power before servicing. The panel and associated equipment may be damaged by removing and/or inserting cards, modules or interconnecting cables while this unit is energized.

Primary Power Source (AC) and Earth Ground Connections

AC power connections are made inside the control panel cabinet. Refer to AC Power in the section titled “Specifications” on page 13, for power and current requirements for each FACP version. Run a pair of wires (with ground conductor) from the protected premises main breaker box to the AC terminal block TB1 on the main power supply. As per the National Electrical Code, use 14 AWG (2.00 mm², 1.6 mm O.D.) or heavier gauge wire with 600V insulation. No other equipment may be connected to this circuit. In addition, this circuit must be provided with overcurrent protection and may not contain any power disconnect devices. An Earth Ground connection must be made to ensure proper panel operation and lightning and transient protection. Connect the Earth Ground wire [minimum 14 AWG (2.00 mm²)] to the grounding stud in the backbox and then run the wire to TB1. Do not use conduit for the Earth Ground connection since this does not provide reliable protection.

Secondary Power Source (Batteries)

Observe polarity when connecting the battery. Connect the battery cable to J12 on the main circuit board using the plug-in connector and cable provided. The battery charger is current-limited and capable of charging sealed lead acid batteries. The charger shuts off when the system is in alarm.

WARNING: SULFURIC ACID

Batteries contain sulfuric acid which can cause severe burns to the skin and eyes and can destroy fabrics. If contact is made with sulfuric acid, immediately flush the skin or eyes with water for 15 minutes and seek immediate medical attention.
2.3 Input Circuits

The MS-5UD has five IDCs (Initiating Device Circuits) and the MS-10UD has ten IDCs. Each circuit is compatible with System Sensor’s i3 smoke detectors which generate a maintenance signal when the detector becomes dirty and a separate supervisory ‘freeze’ signal when ambient temperature falls below the detector rating of approximately 45°F. The maximum loop resistance limit for each IDC is 100 ohms (700 ohms per zone for linear heat detection). Do not use 2-wire smoke detectors on input zones used for linear heat detection. The field wiring for each zone is supervised for opens, shorts and ground faults. All conditions are visually and audibly annunciated.

Each circuit is configured for Style B (Class B) operation and will accept i3 smoke detectors, any normally-open contact devices as well as conventional 2-wire or 4-wire, 24 VDC smoke detectors. Refer to the Fire•Lite Device Compatibility Document for a list of compatible devices.
Initiating Device Circuits can be converted to Style D (Class A) by installing the optional Class A Converter module. Refer to “CAC-5X Class A Converter Module” on page 31.

Class B Initiating Device Circuits (supervised and power-limited) 4.7 KΩ, ½ watt resistor P/N:71252

UL listed Power Supervision Relay
(refer to Device Compatibility Document for list of compatible relays)
UL listed compatible 4-wire smoke detector

Resettable 24 VDC
4-wire smoke detector power
(500 mA maximum)

2-wire smoke detectors
Manual pull stations
Heat detectors

Dummy load all unused circuits - 4.7 KΩ, ½ watt resistor (P/N: 71245)

Figure 2.5 IDC Connections
Combination Waterflow/Supervisory Zone

A combination Waterflow/Supervisory circuit allows an FACP to distinguish between an Alarm switch (waterflow device) and a Supervisory switch (tamper) installed on the same circuit. Any circuit can be programmed as a Combo Type zone. The following figure illustrates the wiring of Zone 2 as a Style B (Class B) Waterflow/Supervisory circuit.

Requirements for the Combination Waterflow/Supervisory circuit are as follows:

- The Waterflow Alarm Switch must connect to the FACP Initiating Device Circuit before the In-Line Resistor as shown in Figure 2.6
- The Supervisory Switch must connect to the FACP Initiating Device Circuit after the In-Line Resistor as shown in Figure 2.6
- Program the FACP Initiating Device Circuit as a Combination circuit as described in “Input Zones” on page 53. Note that since a Waterflow Supervisory Switch is included in a Combination circuit, the waterflow delay must be taken into consideration. Refer to “Waterflow Delay” on page 68.
- Waterflow Alarm Switch activation causes the panel to latch into alarm until the alarm condition is cleared and the FACP is reset
- Supervisory Switch activation causes the panel to latch the supervisory condition if the Combo type code is selected or track (the panel will clear when the supervisory condition is cleared) if the Combo Autoresettable Supervisory type code is selected

2.4 Output Circuits

2.4.1 Notification Appliance Circuits

Total current drawn from the four Style Y (Class B) Notification Appliance Circuits as well as other DC power outputs cannot exceed 3.0 amps for the MS-5UD-3(E), MS-10UD-3(E) [2.5 amp maximum per NAC] powered by the FLPS-3 power supply or 7.0 amps for the MS-5UD-7(C/E), MS-10UD-7(C/E) [3.0 amps maximum per NAC] powered by the FLPS-7 power supply (refer to “Power Supply Calculations” on page 110). Each circuit is supervised, power-limited and provides special application power. Refer to the Fire•Lite Device Compatibility Document for a listing of compatible notification appliances.

The NACs can be converted to Style Z (Class A) by installing the optional Class A Converter module. Refer to “CAC-5X Class A Converter Module” on page 31.
For FCC compliance with Class B wiring, a ferrite bead (supplied) is required for NAC 1 and for NAC 2. If using both NAC 1 and NAC 2 with Class B wiring, a single ferrite may be used with wiring as shown in Figure 2.7.

Class B Notification Appliance Circuits (supervised and power-limited)
4.7 kΩ, ½ watt resistor P/N: 71252

2.4.2 Special Application DC Power Output Connections
Special Application Resettable and Nonresettable 24 VDC power is available on the MS-5UD and MS-10UD control panel.

Special Application
4-Wire Smoke Detector Power (500 mA)
24 VDC filtered, resettable power for 4-wire smoke detectors can be obtained from these terminals (power-limited)

Special Application
Resettable or Nonresettable Power (500 mA)
24 VDC filtered, resettable or nonresettable power can be obtained from these terminals (power-limited)
• Jumper JP31 pins 1 & 2 for nonresettable power (as illustrated in figure to right)
• Jumper JP31 pins 2 & 3 for resettable power

Figure 2.7 NAC Connections

Figure 2.8 Special Application Auxiliary Power
2.4.3 Relays - Programmable

The MS-5UD and MS-10UD control panels provide a factory default programmed alarm relay, fail-safe trouble relay and supervisory relay. Each relay can be programmed to activate for other conditions (refer to “Relays” on page 67). Each Form-C relay is rated for 2 amps @ 30VDC (resistive) and 0.5 amps @ 30 VAC (resistive).

Note that relay connections must be power-limited.

![Figure 2.9 Relay Terminals](ms10udrelay.wmf)

- **Note:** Relay contacts are shown with power applied to the panel and no active troubles, alarms or supervisories. The Trouble Relay is a fail-safe relay which will transfer on any trouble or total power failure.

2.4.4 Remote Synchronization Output

Synchronization is a feature that controls the activation of notification appliances in such a way that all devices will turn on and off at exactly the same time. This is particularly critical when activating strobes which must be synchronized to avoid random activation and a potential hazard to individuals. Devices connected directly to the control panel’s NAC can be synchronized as described in “Synchronized NAC Operation” on page 65.

Notification appliances connected to remote power sources may require synchronization with the FACP’s devices. For the MS-5UD-3(E), MS-10UD-3(E), this can be accomplished by connecting the Remote Synchronization Output from TB2 of the FACP to a compatible sync input of a power supply such as the FCPS-24FS6/8. The 24 VDC, 40 mA signal from TB2 follows, that is mimics the signal on NAC 1 (Out 1). This allows the devices connected to the power supply to be synchronized with the devices connected to Out 1 on the FACP.

For the MS-5UD-7(C/E), MS-10UD-7(C/E), the Remote Sync Output is not required. Synchronization for remote power supplies is provided directly from NAC1 (Out 1). Note that NAC 1 (Out 1) must be programmed for sync operation when used for this purpose.

The Remote Synchronization Output is power-limited and supervised and requires a 4.7KΩ ELR resistor at the remote power supply end of the wiring.

![Figure 2.10 Remote Sync Output](FACP main circuit board)

![Figure 2.10 Remote Sync Output](Remote Sync Output)
2.5 Power-limited Wiring Requirements

Power-limited and nonpower-limited circuit wiring must remain separated in the cabinet. All power-limited circuit wiring must remain at least 0.25” (6.35 mm) away from any nonpower-limited circuit wiring. Furthermore, all power-limited and nonpower-limited circuit wiring must enter and exit the cabinet through different knockouts and/or conduits. A typical wiring diagram is illustrated below.

Figure 2.11 Typical UL Power-limited Wiring Requirements
2.6 Digital Communicator

Two independent telephone lines can be connected to the control panel. Telephone line control/command is made possible via double line seizure as well as usage of an RJ31X style interconnection. **Note that it is critical that the panel's digital communicator be located as the first device on the incoming telephone circuit to properly function.**

Important: The DACT must not be used to dial a phone number that is call-forwarded.

The control panel's digital communicator is built into the main circuit board. Connection and wiring of two phone lines is required as shown below.

Figure 2.12 DACT Installation

Figure 2.13 Wiring Phone Jacks
2.7 Installation of Optional Modules

WARNING: RISK OF ELECTRICAL SHOCK
REMOVE ALL POWER (AC AND DC) BEFORE INSTALLING OR REMOVING MODULES OR WIRING.

2.7.1 CAC-5X Class A Converter Module

Installation

The CAC-5X Module can be used to convert five Style B (Class B) Initiating Device Circuits to Style D (Class A) and the two Style Y (Class B) Notification Appliance Circuits to Style Z (Class A). The module plugs into connector J2 which is located at the top left of the MS-5UD and MS-10UD main circuit board and J7 which is located at the top center of the MS-10UD. Note that two CAC-5X modules are required to convert all NACs and IDCs on the MS-10UD to Class A circuits.

To install the CAC-5X in the MS-5UD or MS-10UD, remove the two main circuit board mounting screws referenced in the following illustration and replace with the two supplied male/female standoffs in the locations indicated in the following figure. Carefully align the connector on the CAC-5X with J2 on the FACP main circuit board and press the module securely into place. Make certain the pins are properly aligned to prevent bending or breaking of any connector pins. Secure the CAC-5X to the standoffs with the screws that were just removed.

To install the second CAC-5X on J7 of the MS-10UD, remove the main circuit board mounting screw referenced in the following illustration and replace with the supplied male/female standoff. Next, insert a male/female standoff in circuit board of the FACP as shown below and secure with a hex nut from the hardware kit. Use a pair of needle-nose pliers to hold the hex nut while securing. Carefully align the connector on the CAC-5X with J7 and press the module securely into place. Make certain the pins are properly aligned to prevent bending or breaking of any connector pins. Secure the top right corners of the CAC-5X to the standoffs with the screw that removed in step 1 and another from the hardware kit.

Wiring NACs and IDCs for Class A

Wire the Style Z (Class A) Notification Appliance Circuits using TB5 of the MS-5UD/MS-10UD and TB2 of the CAC-5X module. Wire the Style D (Class A) Initiating Device Circuits using TB4 of the MS-5UD/MS-10UD and TB1 of the CAC-5X. Note that the wiring will be identical when using TB7 NAC and TB6 IDC of the MS-10UD. Make certain to observe polarity when connecting the devices to the circuits. The B+ and A+ terminals must comprise the feed and return for the positive side of a device and the B- and A- terminals must comprise the feed and return for the negative side of a device. To configure any of the zones for Class B when the CAC-5X is installed, simply wire to the B+ and B- input on the FACP terminal(s) and install the End-of-Line Resistor after the last device on the circuit. Do
not wire to the corresponding A+ and A- terminals on the CAC-5X module. For FCC compliance with Class A wiring, a ferrite bead (supplied with the CAC-5X board) is required for NAC 1 and for NAC 2. If using NAC 1 and/or NAC 2 with Class A wiring, a ferrite must be used for each NAC with wiring as shown in Figure 2.15.

2.7.2 4XTMF Option Module

The 4XTMF module can be plugged into connectors J4 and J5 on the main circuit board. The following steps must be followed when installing the 4XTMF module:

1. Remove all power (AC and DC) from the FACP before installing the modules.
2. Cut jumper JP30 on the main circuit board to allow the control panel to supervise the placement of the 4XTMF option module.
3. Install the two supplied metal standoffs in the locations indicated. These standoffs provide the required earth ground protection.
4. Carefully plug the connectors on the option module into connectors J4 and J5 on the FACP main circuit board, being careful not to bend any pins.
5. Secure the option module to the standoff on the main circuit board with the supplied screws.
6. For proper 4XTM operation, the output relays must be programmed for the factory default settings: Alarm Relay 1, Trouble Relay 2 and Supervisory Relay 3.
7. When the installation has been completed, connect the wiring to the modules as indicated in the following sections.
8. Test system for proper operation.

![Diagram of CAC-5X Class A Converter Module and 4XTMF Option Module](ms-5udclassa.wmf)
Installation of Optional Modules

4XTMF Transmitter Module Installation

The 4XTMF provides a supervised output for a local energy municipal box transmitter in addition to alarm and trouble reverse polarity. A jumper option allows the reverse polarity circuit to open with a system trouble condition if no alarm condition exists. A disable switch allows disabling of the transmitter output during testing to prevent accidental calling of the monitoring service.

Local Energy Municipal Box Service (NFPA 72 Auxiliary Fire Alarm Systems):

- **Supervisory Current:** 5.0 mA
- **Trip Current:** 350 mA (subtracted from notification appliance power)
- **Coil Voltage:** 3.65 VDC
- **Maximum Coil Resistance:** 14.6 ohms
- **Maximum allowable wire resistance between panel and trip coil:** 3 ohms
- Municipal Box wiring can leave the building

Remote Station Service (NFPA 72 Remote Station Fire Alarm Systems) - Intended for connection to a polarity reversal circuit or a Remote Station receiving unit having compatible ratings:

- **Maximum load for each circuit:** 10 mA
- **Reverse polarity output voltage:** 24 VDC
- Remote Alarm and Remote Trouble wiring can leave the building

Figure 2.16 4XTMF Option Module Connection to MS-5UD

Note: This illustration shows the installation of the Option Module on the 5-zone panel. The module is installed in the same location on the 10-zone panel.
Before installing the module, place the disconnect switch to the down (disconnect) position to prevent accidental activation of the municipal box. Note that a Disconnect LED will illuminate after the module is installed in the FACP. In addition, the System Trouble LED will turn on to indicate the Disconnect condition.

Note: the 4XTMF Module is not directly suitable for transmitting reverse polarity supervisory signal. For an application of reverse polarity of a supervisory signal, refer to the Appendix titled “FACP with Keltron” on page 124.

2.7.3 ANN-SEC Option Card

The ANN-SEC option card allows for a secondary ANN-BUS. Install the ANN-SEC as follows.

1. Remove the chassis mounting screw to the right of TB3 and replace it with the supplied 0.5” x 4-40 male-female standoff.
2. Install the header into J13 on the main circuit board.
3. Secure the ANN-SEC to the circuit board with the supplied screw.

* Wiring from these terminals can exit the protected premises. Dummy load terminals 6 and 7 (4.7KΩ, ¼ watt resistor) if Municipal Box is not connected.

![Figure 2.17 4XTMF Transmitter Module](image1)

Figure 2.17 4XTMF Transmitter Module

Figure 2.18 Installing the ANN-SEC Option Card
2.8 ANN-BUS Devices

WARNING: RISK OF ELECTRICAL SHOCK

DISCONNECT ALL SOURCES OF POWER (AC AND DC) BEFORE INSTALLING OR REMOVING ANY MODULES OR WIRING.

Guidelines

- A variety of optional annunciation devices can be connected to an ANN-BUS communication circuit. ANN Series devices can be connected to the primary communication circuit (EIA-485) terminals on TB3. A secondary communication circuit (EIA-485) for these devices is available at TB1 on the ANN-SEC card.
- When using one ANN-BUS circuit, up to eight (8) annunciators can be supported.
- When using both ANN-BUS communication circuits, the primary circuit supports up to three (3) annunciators and the secondary circuit supports up to (5) annunciators.

Compatible devices include:
- ANN-80 LCD Annunciator
- ANN-80C LCD Indicator (Canadian Applications)
- ANN-S/PG Serial/Parallel Printer Interface Module
- ANN-I/O LED Driver Module
- ANN-LED Annunciator Module
- ANN-RLY Relay Module (can be mounted in the FACP chassis)

- When operating two ANN-BUS circuits, only one ANN-S/PG Printer module can be used in the system.
- The panel is capable of operating a primary ANN-BUS (TB3) and a secondary ANN-BUS (TB1 on ANN-SEC card) simultaneously.

2.8.1 ANN-BUS Wiring

This section contains information on calculating ANN-BUS wire distances and the types of wiring configurations (Class B). The length of the 4-conductor wire run is governed by the power pair loading as described below.

Calculating Wiring Distance for ANN-BUS Modules

The following instructions will guide the installer in determining the type of wire and the maximum wiring distance that can be used with FACP ANN-BUS accessory modules.

To calculate the wire gauge that must be used to connect ANN-BUS modules to the FACP, it is necessary to calculate the total worst case current draw for all modules on a single 4-conductor bus. The total worst case current draw is calculated by adding the individual worst case values for each module. The individual worst case values are shown in the following table:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Worst Case Current Draw 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN-80(C) LCD Annunciator/Indicator</td>
<td>0.040 amps</td>
</tr>
<tr>
<td>ANN-S/PG Serial/Parallel Printer Interface Module</td>
<td>0.040 amps</td>
</tr>
<tr>
<td>ANN-I/O LED Driver Module</td>
<td>0.200 amps</td>
</tr>
<tr>
<td>ANN-LED Annunciator Module</td>
<td>0.068 amps</td>
</tr>
<tr>
<td>ANN-RLY Relay Module</td>
<td>0.075 amps</td>
</tr>
</tbody>
</table>

Table 2.1

1 Total worst case current draw on a single ANN-BUS cannot exceed 0.5 amp.

After calculating the total worst case current draw, Table 2.2 specifies the maximum distance the modules can be located from the FACP on a single wire run. The table ensures 6.0 volts of line drop maximum. In general, the wire length is limited by resistance, but for heavier wire gauges, capacitance is the limiting factor.

These cases are marked in the chart with an asterisk (*). Maximum length can never be more than 6,000 feet (1,800 m), regardless of gauge used. The formula used to generate this chart is shown in the note below.

<table>
<thead>
<tr>
<th>24 VDC Power Wiring Distance: ANN-BUS Modules to FACP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Worst Case Current Draw (amps)</td>
</tr>
<tr>
<td>22 Gauge</td>
</tr>
<tr>
<td>0.100</td>
</tr>
<tr>
<td>0.200</td>
</tr>
<tr>
<td>0.300</td>
</tr>
<tr>
<td>0.400</td>
</tr>
<tr>
<td>0.500</td>
</tr>
</tbody>
</table>

Table 2.2 Wiring Distances
The following formulas were used to generate the wire distance chart:

\[
\text{Maximum Resistance (Ohms)} = \frac{6.0 \text{ Volts}}{\text{Total Worst Case Current Draw (amps)}}
\]

\[
\text{Maximum Wire Length (feet) (6,000 feet maximum)} = \frac{\text{Maximum Resistance (Ohms)} \times 500}{Rpu}
\]

where: \(Rpu \) = Ohms per 1,000 feet for various Wire Gauges (see table below)

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Ohms per 1,000 feet (Rpu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>16.2</td>
</tr>
<tr>
<td>18</td>
<td>6.4</td>
</tr>
<tr>
<td>16</td>
<td>4.02</td>
</tr>
<tr>
<td>14</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Exception: When using the ANN-RLY module, the installer must ensure that the maximum 24VDC power line drop does not exceed 0.3 volts. This results in the following wiring limitations:

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Maximum Wire Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>312 feet</td>
</tr>
<tr>
<td>16</td>
<td>497 feet</td>
</tr>
<tr>
<td>14</td>
<td>787 feet</td>
</tr>
<tr>
<td>12</td>
<td>1,250 feet</td>
</tr>
</tbody>
</table>

Wiring Distance Calculation Example:

Suppose a system is configured with the following ANN-BUS modules:

- 2 ANN-80 Remote Fire Annunciators
- 1 ANN-S/PG Serial/Parallel Printer Interface Module
- 1 ANN-I/O LED Driver Module

The total worst case current is calculated as follows:

<table>
<thead>
<tr>
<th>Module</th>
<th>Current Draw</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN-80 Current Draw</td>
<td>2 X 0.040 amps = 0.080 amps</td>
</tr>
<tr>
<td>ANN-S/PG Current Draw</td>
<td>1 X 0.040 amps = 0.040 amps</td>
</tr>
<tr>
<td>ANN-I/O Current Draw</td>
<td>1 X 0.200 amps = 0.200 amps</td>
</tr>
<tr>
<td>Total Worst Case Current Draw</td>
<td>= 0.320 amps</td>
</tr>
</tbody>
</table>

Using this value and referring to the Wiring Distance Table 2.2 on page 35, it can be found that the available options are:

- 463 feet maximum using 22 Gauge wire
- 1,172 feet maximum using 18 Gauge wire
- 1,866 feet maximum using 16 Gauge wire
- 2,953 feet maximum using 14 Gauge wire
Wiring Configuration

Figure 2.19 illustrates the wiring between the FACP’s Primary ANN-BUS and ANN-BUS devices.

Figure 2.19 FACP wiring to ANN-BUS Device on Primary ANN-BUS

illustrates the wiring between the FACP’s Secondary ANN-BUS, via the ANN-SEC option card, and ANN-BUS devices.

Figure 2.20 FACP wiring to ANN-BUS Device on Secondary ANN-BUS via ANN-SEC
Powering ANN-BUS Devices from Auxiliary Power Supply

Figure 2.21 illustrates the powering of ANN-BUS devices from an auxiliary power supply such as the FCPS-24FS6/8, when the maximum number of ANN-BUS devices exceeds the ANN-BUS power requirements.

2.8.2 ANN-BUS Device Addressing

Each ANN-BUS device requires a unique address (ID Number) in order to communicate with the FACP. A 5-position DIP switch on each device is used to set this address. The address set for these devices must also be programmed at the FACP for the specific device (refer to the programming section titled “ANN-BUS” on page 71).

A maximum of 8 devices can be connected to the FACP ANN-BUS communication circuit. Device addresses do not need to be sequential and can be set to any number between 01 and 08. Note that 00 is not a valid address. The following table shows the DIP switch setting for each address.

<table>
<thead>
<tr>
<th>Address</th>
<th>Switch 5</th>
<th>Switch 4</th>
<th>Switch 3</th>
<th>Switch 2</th>
<th>Switch 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>not valid</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>01</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>02</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>03</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>04</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>05</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>06</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>07</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>08</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

NOTE: address (ID Number) DIP switches on some devices may have more than 5 switch positions. Unless otherwise specified in the documentation supplied with each device, switch positions 6 and above must be set to OFF.

2.8.3 ANN-80(C) Remote Fire Annunciator/Indicator

The ANN-80(C) Annunciator/Indicator is a compact, 80 character, backlit LCD remote fire annunciator which mimics the FACP display. It also provides system status indicators for AC Power, Alarm, Trouble, Supervisory and Alarm Silenced conditions. The ANN-80 Annunciator provides buttons for remote Reset, Silence, Acknowledge, and Drill of the FACP. The ANN-80C Indicator does not provide
these buttons. Communication between the ANN-80(C) and FACP is accomplished over a two wire serial interface employing the ANN-BUS communication format. The devices are powered, via two additional wires, from either the host FACP or remote UL-listed, filtered, power supply.

Specifications

- Operating Voltage Range: 18 VDC to 28 VDC
- Current Consumption @ 24 VDC nominal (filtered and nonresettable):
 - Normal/Standby (no activity): 37.0 mA
 - Trouble: 39.0 mA
 - Alarm: 40.0 mA
 - AC Fail (not backlit): 15.0 mA
- For use indoors in a dry location

Installation

Ensure that all power (AC and DC) has been removed from the FACP before installing the annunciator.

Opening/Closing Annunciator

The following procedure details the steps used to open the annunciator in order to access the terminal block and DIP switches (refer to figure below):

1. Turn the key switch to the ON (Unlocked) position by turning the key counter-clockwise
2. Push in the snap latch located on the right side of the unit while pulling the cover open
3. To close the cover, make certain the key switch is in the ON (Unlocked) position. Swing the cover closed, snapping it shut
4. Turn the key switch to the OFF (Locked) position by turning clockwise and remove the key

Mounting

The ANN-80 can be surface or semi-flush mounted to a single, double or 4” square electrical box. Select and remove the appropriate knockout(s), pull the necessary wires through the knockouts and mount the annunciator in or on the wall depending on the type of installation desired.

The ANN-SB80KIT(-R/-B/-W) is an available mounting kit for the ANN-80 annunciator. The kit comes with a surface backbox and surface wedge for angled viewing. The two pieces can be used separately or can be stacked together.

The ANN-80 cover must be attached to the annunciator backplate before mounting the annunciator to the electrical box/wall. The cover cannot be reattached or removed after the annunciator has been mounted.
Wiring ANN-80 to FACP

The following steps can be used as a guide to wire the annunciator. Make certain all power has been removed from the FACP prior to annunciator installation.

1. Route wires from hole in backplate, through wiring channel and then to ANN-80 terminal block TB1.

2. Remove appropriate amount of wire insulation.
3. Connect the wiring from the FACP ANN-BUS to annunciator TB1 terminals 3 (A) & 4 (B). Make certain to connect A to A and B to B.
4. If appropriate, connect the wiring going to the next device on the ANN-BUS to TB1 terminals 3 & 4. Make certain to connect A to A and B to B.
5. Connect the wiring from the 24 VDC power source to annunciator TB1 terminals 1 (-) & 2 (+). Make certain to observe proper polarity.
6. If appropriate, connect the power wiring going to the next device to terminals 1 (-) & 2 (+). Make certain to observe proper polarity.
7. After all connections are made, remove extra wire from inside of annunciator by dressing it neatly through wire channel, with any excess wire pushed back through hole into electrical box.

The following table shows the ANN-80 connections to the MS-5UD/MS-10UD.

<table>
<thead>
<tr>
<th>MS-5UD/MS-10UD (TB3)</th>
<th>ANN-80 (TB1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 4 GND (-)</td>
<td>Terminal 1 (-)</td>
</tr>
<tr>
<td>Terminal 3 PWR (+)</td>
<td>Terminal 2 (+)</td>
</tr>
<tr>
<td>Terminal 2 A (ANN-BUS)</td>
<td>Terminal 3 (A)</td>
</tr>
<tr>
<td>Terminal 1 B (ANN-BUS)</td>
<td>Terminal 4 (B)</td>
</tr>
</tbody>
</table>
Programming

Following installation and wiring of the ANN-80 LCD annunciator to the FACP, the annunciator must be added to the system via FACP programming. Refer to the programming section titled “ANN-BUS” on page 71 in this manual for detailed programming information. Select the LCD option for programming.

2.8.4 ANN-S/PG Serial/Parallel Printer Interface Installation

The ANN-S/PG Serial/Parallel Printer Interface module allows the ancillary connection of a serial or parallel printer to the FACP for a real-time log of system events, detector status reports and event history. Proceed with the installation as described in the following:

1. Ensure that all power (AC and DC) has been removed from the FACP.
2. Connect the ANN-S/PG to the FACP as illustrated in Figure 2.23.
3. Using the DIP switches on the back of the ANN-S/PG module, assign an ID number (address) to the module.
4. Select the address and configuration options for the ANN-S/PG module as described in the Programming section of this manual (refer to “ANN-BUS” on page 71).
 Note that the Auto-configure feature allows the programmer to quickly bring all installed ANN-BUS modules online (refer to “Auto-Configure” on page 72).
5. Connect a printer to the ANN-S/PG Parallel and/or Serial connectors (refer to Figure 2.23 on page 41).

Specifications

- Operating Voltage: 24 VDC
- Current (Alarm and Standby): 45 mA
- Ambient Temperature: 32°F to 120°F (0°C to 49°C)
- Max. Wiring Distance from FACP: 6,000 ft. (1,800 m)
- Mounting: Surface
- Dimensions: 6”W x 7-3/4”H x 1-7/16”D (15.2 cm W x 19.7 cm H x 3.7 cm D)
- For indoor use in a dry location only

PRN-7 Printer Installation

When connected to the FACP via the ANN-S/PG module, the PRN-7 prints the status changes within the control panel and time-stamps the printout with the time of day and date that the event occurred. It provides 80 columns of data on standard 9” x 11” tractor-feed paper. This section contains information on connecting a printer to the control panel and setting the printer options.

Connecting a PRN-7 Printer

Remote printers require a primary AC power source. If required for the fire alarm system configuration (for example, a Proprietary Fire Alarm System), a remote printer requires a secondary power source (battery backup). Since a secondary power source is not provided as a standard feature, a separate UL-listed Uninterruptible Power Supply (UPS) should be used. The building emergency power supply may be used, as long as it meets the power continuity requirements of NFPA 72. Refer to NFPA 72 for further details.

Connect the remote printer to the FACP via the ANN-S/PG module using a standard DB-9 cable. One end of the cable will plug into the DB-9 connector on the PRN-7 printer and the other end plugs into the serial connector on the ANN-S/PG module.

Setting Printer Options

Refer to the documentation supplied with the PRN-7 printer for instructions on using the printer menu controls. Set the printer options (under the menu area) as shown in the following table:
PRN-6F Printer Installation

When connected to the FACP via the ANN-S/PG module, the PRN-6F prints the status changes within the control panel and time-stamps the printout with the time of day and date that the event occurred. It provides 80 columns of data on standard 9” x 11” tractor-feed paper. This section contains information on connecting a printer to the control panel and setting the printer options.

- Connecting PRN-6F Printer

Remote printers require a primary AC power source. If required for the fire alarm system configuration (for example, a Proprietary Fire Alarm System), a remote printer requires a secondary power source (battery backup). Since a secondary power source is not provided as a standard feature, a separate UL-listed Uninterruptible Power Supply (UPS) should be used. The building emergency power supply may be used, as long as it meets the power continuity requirements of NFPA 72. Refer to NFPA 72 for further details.

Connect the remote printer to the FACP via the ANN-S/PG module using a standard DB-25 cable. One end of the cable will plug into the DB-25 connector on the PRN-6F printer and the other end plugs into the parallel connector on the ANN-S/PG module. Note that the 9-pin DB-9 port on the ANN-S/PG is used to connect a serial printer. The 25-pin port is used for a Centronics parallel printer cable. Connect either a serial or parallel printer, but not both at the same time.

- Setting Printer Options

Refer to the documentation supplied with the PRN-6F printer for instructions on using the printer menu controls. Set the printer options (under the menu area) as shown in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Setting</th>
<th>Option</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>HS Draft</td>
<td>CPI</td>
<td>10CPI</td>
</tr>
<tr>
<td>LPI</td>
<td>6 LPI</td>
<td>Skip</td>
<td>0.5</td>
</tr>
<tr>
<td>ESC Character</td>
<td>ESC</td>
<td>Emulate</td>
<td>Epson FX-850</td>
</tr>
<tr>
<td>Bidirectional Copy</td>
<td>ON</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>CG-TAB</td>
<td>Graphic</td>
<td>Buffer</td>
<td>40K</td>
</tr>
<tr>
<td>Country</td>
<td>E-US ASCII</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>Auto CR</td>
<td>OFF</td>
<td>Baud</td>
<td>9600 or 2400</td>
</tr>
<tr>
<td>Color Option</td>
<td>Not Installed</td>
<td>Format</td>
<td>7 Bit, Even, 1 Stop</td>
</tr>
<tr>
<td>Formien</td>
<td></td>
<td>Protocol</td>
<td>XON/XOFF</td>
</tr>
<tr>
<td>Lines</td>
<td>6LPI=60</td>
<td>Character Set</td>
<td>Standard</td>
</tr>
<tr>
<td>Standard</td>
<td>Exec 10.5</td>
<td>Sl.Zero</td>
<td>On</td>
</tr>
<tr>
<td>Barcode</td>
<td>Off</td>
<td>Auto LF</td>
<td>On</td>
</tr>
<tr>
<td>Barcode</td>
<td>Unsecured</td>
<td>PAPER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIN 1</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIN 2</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SINGLE</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PUSH TRA</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PULL TRA</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAP ROLL</td>
<td>12/72"</td>
</tr>
</tbody>
</table>

Table 2.4 PRN-6F Setup Options
2.8.5 ANN-I/O LED Driver Module

The ANN-I/O is an LED driver module that can be used in a wide variety of applications, including as an interface with most customized graphic annunciators. The ANN-I/O can drive up to 40 LEDs. The following sections describe hardware installation. Refer to the section titled “ANN-BUS” on page 71 for programming information.

ANN-I/O Board Layout

Figure 2.24 illustrates the ANN-I/O board showing locations of screw terminals for connection to the FACP, pin connectors for connecting LEDs and the DIP switch for selecting the ANN-BUS ID number.

Specifications

- Max. ANN-BUS Voltage: 28 VDC
- Max. Current:
 - Alarm: 200 mA
 - Standby: 35 mA
 - Each LED: 10 mA
- Operating Temperature: 32°F to 120°F (0°C to 49°C)
- For indoor use in a dry location only
ANN-I/O Connection to FACP

The ANN-I/O connects to the FACP via the ANN-BUS as illustrated in Figure 2.25. After the ANN-I/O is connected to the panel, it must be added to the system via FACP programming.

ANN-I/O Module LED Wiring

There are four 12-pin connectors on the ANN-I/O module for connecting LEDs. Each set of 10 LEDs get their power from Pin 11 of the corresponding connector. Internal resistors are sized so that there is approximately 10 mA of current for each LED. No series resistors are required. LED outputs are mapped to output circuits. Refer to the section titled “ANN-I/O LED Zone Assignments” on page 72 of this manual.

Figure 2.25 ANN-I/O Connection to FACP
The LEDs are wired as illustrated in Figure 2.26. Note that the illustration depicts only connectors P1 and P2. Wiring is identical for P3 (LEDs 21-30) and P4 (LEDs 31-40).

2.8.6 ANN-LED Annunciator Module

The ANN-LED annunciator module provides LED annunciation of general system faults and input zones when used with a compatible FACP. The ANN-LED module provides alarm (red), trouble (yellow) and supervisory (yellow) indication for up to ten input zones.

Canadian Applications: The ANN-LED is supplied standard with the MS-5UD-7C and MS-10UD-7C models. It is mounted to the dress panel included with these models.

Specifications

- Max. ANN-BUS Voltage: 24 VDC
- Max. Current:
 - Alarm: 68 mA
 - Standby: 28 mA
- Operating Temperature: 32°F to 120°F (0°C to 49°C)
- For indoor use in a dry location only

Mounting/Installation

Install the ANN-LED Module as described in the documentation supplied with the annunciator.
ANN-LED Board Layout and Connection to FACP

Figure 2.27 illustrates the ANN-LED board wiring connections to the FACP.

2.8.7 ANN-RLY Relay Module

The ANN-RLY relay module provides 10 programmable Form-C relays when used with a compatible FACP.

Specifications

- Operating Voltage: 24 VDC
- Max. Current:
 - Alarm: 75 mA
 - Standby: 15 mA
- Relay Contact Ratings:
 - 2 amps @ 30 VDC (resistive)
 - 0.5 amps @ 30 VAC (resistive)
- Operating Temperature: 32°F to 120°F (0°C to 49°C)
- For indoor use in a dry location only
Mounting/Installation

The ANN-RLY relay module can be mounted inside the FACP main circuit board chassis or inside the ROME Series enclosure. Refer to the ANN-RLY Installation Document #53033 for instructions on chassis mounting or to the ROME Series Installation Document #53530 for mounting in the separate backbox.

Figure 2.28 ANN-RLY Mounting Options
ANN-BUS Audio Panel

WARNING: RISK OF ELECTRICAL SHOCK

DISCONNECT ALL SOURCES OF POWER (AC AND DC) BEFORE INSTALLING OR REMOVING ANY WIRING.

The FACP must be enabled to communicate with the ACC-25/50ZS/T Audio Panel over the ANN-BUS (refer to “ANN-BUS Enabled” on page 71). This is accomplished by programming the Audio Panel ANN-BUS address into the FACP (refer to “BUS Modules” on page 71). For details on setting the ANN-BUS address and programming the audio panel, refer to the ACC-25/50ZS/T Series Audio Panel manual (document #51889).

The ACC-25/50ZS/T Series audio panel connects to the FACP via the ANN-BUS communication circuit. The five input zones on the MS-5UD correspond to the first five ACC-25/50ZS/T Series audio zones and the ten input zones on the MS-10UD correspond to the first ten ACC-25/50ZS/T Series audio zones. The programmer can select which of the five audio messages at the audio panel will play when an FACP input zone goes into alarm (refer to “ACC Message” on page 61). The message will play over the corresponding audio panel output circuit. For example, if FACP Input Zone 3 goes into alarm, the programmed message will play over the ACC-25/50ZS/T output circuit 3. If two or more input zones are active at the same time, the highest priority message will turn on.

One of the FACP input zones can be programmed as an All-Call Zone. If this zone goes into alarm, all ACC-25/50ZS/T Series audio zones will activate (refer to “ANN-AUDIO Options Screen” on page 74).

A fault at the ACC-25/50ZS/T Series panel will cause the FACP to indicate a System Trouble and the display will indicate a Voice Evac Fault.
The only connection between the MS-5UD/10UD and the ACC-25/50ZS/T audio panel is a pair of communication wires connected between the A/B terminals on TB3 of the FACP and TB1 terminals 2 & 3 of the ACC-ZPMK module on the ACC-25/50ZS/T.

![FACP Connection to ACC-25/50ZS/T Audio Panel](acczpmto5x.wmf)

Figure 2.30 FACP Connection to ACC-25/50ZS/T Audio Panel
Section 3: Programming

NOTICE TO USERS, INSTALLERS, AUTHORITIES HAVING JURISDICTION, AND OTHER INVOLVED PARTIES

This product incorporates field-programmable software. In order for the product to comply with the requirements in the Standard for Control Units and Accessories for Fire Alarm Systems, UL 864, certain programming features or options must be limited to specific values or not used at all as indicated below:

<table>
<thead>
<tr>
<th>Program feature or option</th>
<th>Permitted in UL 8647 (Y/N)</th>
<th>Possible settings</th>
<th>Settings permitted in UL 864</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trouble Call Limit</td>
<td>N</td>
<td>Refer to “Trouble Call Limit (Dialer Runaway Prevention)” on page 90.</td>
<td>Trouble Call Limit = 0 for unlimited Central Station trouble calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trouble Call Limit = 0 (factory default): unlimited calling to Central Station for any trouble condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trouble Call Limit = 1 - 99: limits call for each unique trouble to from 1 to 99 within a 24 hour period</td>
<td></td>
</tr>
<tr>
<td>Remote Download</td>
<td>Y</td>
<td>Refer to “Remote Download” on page 108.</td>
<td>Remote Download Proprietary Yes for Proprietary system intended to protect only contiguous properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote Download - Proprietary No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote Download - Proprietary Yes</td>
<td></td>
</tr>
<tr>
<td>Combo</td>
<td>Y</td>
<td>Refer to Table 3.1 on page 55.</td>
<td>One Waterflow and one Supervisory device</td>
</tr>
<tr>
<td>Combo w/AutoResettable Superv</td>
<td>Y</td>
<td>Refer to Table 3.1 on page 55.</td>
<td>One Waterflow and one Supervisory device</td>
</tr>
</tbody>
</table>

3.1 User Programming

The MS-5UD/MS-10UD FACP is completely field programmable using the panel keypad and requires no special software skills.

![SYSTEM ALL NORMAL](image)

Read Status mode can be entered while the panel is in any mode of operation. If an alarm or supervisory event exists at the panel, the event must be cleared before entering Programming mode. To access any of the programming or read status features, the Enter or Mode key must be pressed, which will cause the LCD to display the following:

![READ STATUS MODE PRG FUTURE USE REMOTE DOWNLOAD](image)

Pressing 1, while this screen is being displayed, will cause the control panel to enter the Read Status Mode which allows the user to view the programmed features and status of the control panel. The Read Status feature is not password protected. Refer to “Read Status” on page 102 for a detailed description of this feature.

Pressing 2 will select user Programming Mode which may only be accomplished by an authorized person. After pressing 2, a screen will prompt for a password. After entering the correct password, the user may select from a list of programming options.

Pressing 4 will select Remote Download which allows the user to enable the remote programming option. Refer to “Remote Download” on page 108.
Exit Programming and Read Status Mode

The programmer can exit any mode by repeatedly pressing the keypad ESC (Escape) key until the display reads System All Normal. Ten minutes of inactivity will also cause the panel to exit Programming Mode. Note that the data which is entered during Programming mode is not saved until the programmer exits this mode by repeatedly pressing the ‘ESC’ key. If the Reset key is pressed or power is lost before exiting Programming mode, all data just entered will be lost.
User Programming Levels

There are two user programming levels:

- User Master Program Level 1 is used for programming panel specific data relating to device types, zoning, messages, control panel functions, etc.
- User Maintenance Program Level 2 is used by a qualified operator to access features such as Disable/Enable, View and Clear History, Walktest and System Time Change.

3.2 Initial Power-up

The following sections describe the initial programming procedures for a new system. The same procedures are used to modify programming in an existing system.

After completing the wiring of devices to the FACP, apply power to the control panel. If wiring has not been completed and/or End-of-Line resistors are not installed at the panel, a trouble condition will be indicated at the panel and a trouble message will be displayed on the LCD. Following is an example of a possible trouble message that may be displayed.

3.3 Programming Screens Description

Three options are available when the Enter key is pressed: Read Status, Programming, and Remote Download Mode. The Read Status and Programming options have multiple functions or features which may be chosen. To view all of the choices, it is necessary that the programmer scroll through a number of additional subscreens. These selections are displayed on multiple screens to make them more readable for the programmer. Refer to “Master Programming Level” on page 53, for additional information on the various screens.

The title of the main option screen will always be displayed at the top of the subscreens for the programmer’s convenience. If additional subscreens exist, an Up or Down arrow will be displayed in the upper right corner of the screen being viewed. The programmer can then press the keypad Up or Down arrow key to view the new subscreen. To select one of the choices in a screen, the programmer presses the keypad numerical key corresponding to the desired choice.

Note that subscreens may also have multiple options which require viewing more than one screen. The same process, as detailed in the previous paragraphs, is followed to view all option choices.

3.4 Programming and Passwords

There are two factory set programming passwords which will access the Programming screens as indicated in the following examples. From either of the screens, access to specific system and device features or programming may be obtained. All user programming entries are stored in nonvolatile memory. The factory set passwords can be changed by the user as described in “Password Change” on page 93. If an invalid password is entered, the blinking cursor will return to the first password character position. To exit Programming or Read Status mode at any time, press the ESC (Escape) key repeatedly. Note that Programming mode must be exited using the ESC key in order to store the program data entered during this mode. If the Reset key is pressed or power is lost before exiting Programming mode, the data just entered will not be saved.

To access user Programming mode, press the Enter or Mode key. The LCD will display the following:

```
1=READ STATUS MODE
2=PROGRAMMING MODE
3=FUTURE USE
4=REMOTE DOWNLOAD
```

To enter the user Programming mode, press 2. The display will read as follows:

```
PROGRAMMING
ENTER PASSWORD
*****
```

Entering the Master level password (default 00000) will cause the following screen to appear:

```
PROGRAMMING
1=INPUT ZONES
2=NACS
3=RELAYS
```

If the Maintenance level password (default 11111) is entered, the following screen will appear:

```
PROGRAMMING
1=INPUT ZONES
2=HISTORY
3=WALKTEST
```
Note that in the two preceding screens, an arrow appears to inform the programmer that additional options can be viewed by pressing the keypad down arrow key.

3.5 Master Programming Level

When the Master Program Level password is entered, the control panel will enter user Programming mode. In this mode, the piezo sounder remains off, the trouble relay is activated and the system Trouble LED flashes until Programming mode is exited. The following display will appear:

![Programming Screen #1](image1)

The down arrow which appears in the display indicates that additional programming choices can be viewed by pressing the down arrow key on the keypad. If a down and up arrow appear in the display, pressing the ‘down’ arrow key will display the subsequent Programming Screens as illustrated below while pressing the ‘up’ arrow key will display the previous screen.

![Programming Screen #2](image2)

3.5.1 Input Zones

The Input Zones option allows the user to initially program or change the programming for the five input zones (circuits) on the MS-5UD or the ten input zones (circuits) on the MS-10UD. Pressing 1, while viewing Programming Screen #1, will select the Input Zones option and display a screen similar to the following:

![Input Zone Screen #1](image3)

Pressing the down arrow key will display additional screens for Input Zones 4 through 5 in the MS-5UD or Input Zones 4 through 10 in the MS-10UD. To program a specific zone, press the number key corresponding to the desired zone while viewing one of the Input Zone screens. To program Input Zone 1, press the 1 key while viewing Input Zone Screen #1. The following screens will be displayed:

![Edit Input Zone Screen #1](image4)

To change the programming for the displayed zone, press the keyboard ‘down’ arrow key to view the Edit Zone screens.

The following examples show the editing of Input Zone 1:

![Edit Input Zone Screen #2](image5)

![Edit Input Zone Screen #3](image6)

![Edit Input Zone Screen #4](image7)

![Edit Input Zone Screen #5](image8)
Enable/Disable Zone

To Enable or Disable the zone, press the 1 key while viewing the Edit Input Zone Screen #2. Each press of the key will toggle the screen between Enabled Yes and Enabled No. If Enabled No is selected, the zone will be disabled by the control panel, preventing the circuit from reporting alarms and troubles to the panel. The control panel LCD will display the zone which has been disabled and FACP will turn on the Trouble LED.
Type

To select the type of zone being programmed, press the 2 key while viewing the Edit Input Zone Screen #2. This will cause the control panel to display the following Zone Type Screen:

```
ZONE TYPE
1=PULL STATION
2=WATERFLOW
3=WATERFLOW NS
```

Zone Type Screen #1

Pressing the down arrow key will display additional zone types as indicated in the following table. Some of the following Zone Types are not available for Canadian applications. Refer to “Canadian Option” on page 70 for additional details.

<table>
<thead>
<tr>
<th>Zone Type</th>
<th>Action When Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-Station</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>Waterflow</td>
<td>Fire Alarm Delayed (uses waterflow delay)</td>
</tr>
<tr>
<td>Waterflow Nonsilenceable</td>
<td>Fire Alarm (uses waterflow delay)</td>
</tr>
<tr>
<td>Combo</td>
<td>Fire/Supervisory (uses waterflow delay)</td>
</tr>
<tr>
<td>Combo AutoResettatable</td>
<td>Fire/Supervisory AR, nonlatching (uses waterflow delay)</td>
</tr>
<tr>
<td>2-Wire Detector</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>Normally Open Contact</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>Fire</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>Tamper</td>
<td>Supervisory</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Supervisory, latching</td>
</tr>
<tr>
<td>Supervisory AutoResettatable</td>
<td>Supervisory, nonlatching</td>
</tr>
<tr>
<td>Medic-Alert</td>
<td>Supervisory, latching</td>
</tr>
<tr>
<td>Hazard-Alert</td>
<td>Supervisory, latching</td>
</tr>
<tr>
<td>Tornado-Alert</td>
<td>Supervisory, latching</td>
</tr>
<tr>
<td>Proc-Mon</td>
<td>Piezo</td>
</tr>
<tr>
<td>Procmon-AR</td>
<td>Piezo, nonlatching</td>
</tr>
<tr>
<td>AC-Loss-Mon</td>
<td>Trouble</td>
</tr>
<tr>
<td>Ack-Switch</td>
<td>Acts like panel Acknowledge Key</td>
</tr>
<tr>
<td>Sil-Switch</td>
<td>Acts like panel Alarm Silence Key</td>
</tr>
<tr>
<td>Drill-Switch</td>
<td>Acts like panel Drill Key</td>
</tr>
<tr>
<td>Reset-Switch</td>
<td>Acts like panel Reset Key</td>
</tr>
<tr>
<td>PAS-Bypass</td>
<td>Positive Alarm Sequence Disable</td>
</tr>
<tr>
<td>Drill-Switch AutoResettatable</td>
<td>Acts like panel Drill Key, nonlatching</td>
</tr>
</tbody>
</table>

Table 3.1 Zone Types

While viewing any Zone Type screen, select the type of zone being programmed by pressing the corresponding keyboard number key. The display will return to Edit Input Zone Screen #2 and indicate the selection next to the Type option.

NOTE: Almost any Input Zone type can activate an ACC-25/50ZST audio zone and output an assigned message with the exception of ACKNOWLEDGE, SILENCE, RESET, and PAS BYPASS Switches. The DRILL Switch (or input programmed as a drill switch) will cause all of the corresponding ACC-25/50ZST audio zones to go active and will output Message 1.
Verification

Alarm verification is used to confirm that a smoke detector activation is a true alarm condition and not a false alarm. This feature is selected by pressing 3 while viewing the Edit Zone Screen #2 so that the display reads Verification On. Each time the 3 key is pressed, the display will toggle between Verification On and Verification Off. For a detailed description, refer to “Alarm Verification (None or One Minute)” on page 101.

Note that verification can only be enabled for a zone that is programmed as a smoke detector type. Zones programmed for any other type will not allow the Verification feature to be enabled. Do not use the verification feature if a mix of smoke detectors and normally open contact devices are connected to the same zone.
Pressing 1 while viewing Edit Input Zone Screen #3 will display the following screen:

PAS/Pre-Signal Delay

```
INPUT ZONE #
1=PAS/Pre-SIG DELAY
NO DELAY
```

Edit Input Zone Screen #3

```
PAS/Pre-SIG DELAY
1=NO DELAY
2=PRE-SIGNAL DELAY
3=PAS DELAY
```

PAS/Pre-Signal Delay Screen
Pre-signal

The Pre-signal option programs the zone to delay panel activation for a preprogrammed time delay of up to three minutes while allowing for visual verification by a person. Note that the alarm relay and communicator will respond to the initial alarm immediately. To enable the Pre-signal feature, press 2 while viewing PAS/Pre-Signal Screen. Refer to “Presignal” on page 100.
PAS

The PAS (Positive Alarm Sequence) option will program the zone to delay panel activation (including alarm relay and communicator) for a period of 15 seconds plus a programmable time of up to 3 minutes. To enable the PAS feature, press 3 while viewing the PAS/Pre-Signal Screen. This option is available only for circuits programmed as smoke detector circuits. Refer to “Positive Alarm Sequence” on page 100.
Freeze Supervision

Pressing 1 for Freeze Supv while viewing Edit Input Zone Screen #4 programs the FACP to supervise the devices connected to the selected zone for freeze conditions. Each press of the 1 key will toggle the display between Freeze Supv: Yes and No. The factory default setting is No Freeze Supervision.
ACC Message

Pressing 2 for *ACC MSG #* while viewing Edit Input Zone Screen #4 will cause the following screens to be displayed:

- **ACC Message Screen #1**
 - ACC MSG NUMBER
 - 1 = NO MSG-ACTIVE
 - 2 = NO MSG-INACTIVE
 - 3 = MESSAGE 1

- **ACC Message Screen #2**
 - ACC MSG NUMBER
 - 1 = MESSAGE 2
 - 2 = MESSAGE 3
 - 3 = MESSAGE 4

- **ACC Message Screen #3**
 - ACC MSG NUMBER
 - 1 = MESSAGE 5

Using these screens, the programmer can assign an audio message to each input zone. The NO MSG-ACTIVE option is the factory default selection which means that no message has been programmed for the input zone but its corresponding ACC-25/50ZST audio zone will turn on when this input zone goes active (if an input zone with a programmed audio message goes active, the message will also be played over this zone). The NO MSG-INACTIVE option will not turn on the corresponding ACC-25/50ZST audio zone when this input goes active. If MESSAGE 1 through 5 is the programmed option, the selected message will play when the FACP is connected to an ACC-25/50ZST Audio Panel via the ANN-BUS and the corresponding FACP input zone goes into alarm.
Adjective/Noun

The Adjective/Noun selection allows the programmer to enter specific descriptors about the detector currently being programmed. Pressing 1 while viewing Edit Input Zone Screen #4 will cause the following screen to be displayed:

<table>
<thead>
<tr>
<th>I=STANDARD ADJECTIVE</th>
<th>2=STANDARD NOUN</th>
<th>3=CUSTOM ADJECTIVE</th>
<th>4=CUSTOM NOUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=ADJECTIVE/NOUN</td>
<td>2=DESCRIPTION</td>
<td>3=DESCRIPTION</td>
<td>4=DESCRIPTION</td>
</tr>
</tbody>
</table>

Pressing 1 while viewing the Adjective/Noun Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Adjective screens. Press the number corresponding to the adjective that is to be used as a descriptor for the location of the detector currently being programmed. When an adjective has been selected, it will appear at the top of the display as indicated by the asterisks.

Pressing 2 while viewing the Adjective/Noun Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Noun screens. Press the number corresponding to the noun that is to be used as a descriptor for the location of the detector currently being programmed. When a noun has been selected, it will appear at the top of the display as indicated by the asterisks.

Pressing 3 or 4 while viewing the Adjective/Noun Screen will display screens similar to the previous Adjective and Noun Screens. The new screens will list custom Adjectives and Nouns which have been programmed into the control panel by the user utilizing the PK-CD programming kit. These descriptors are selected as described in the previous sections.
Description

The Description selection allows the programmer to enter additional information about the zone currently being programmed. This information will be displayed as part of the device label on the display. Pressing 2 while viewing Edit Input Zone Screen #4 will cause the following screen to be displayed:

A flashing cursor will appear at the first asterisk to the left. The programmer can enter additional descriptive information about the device being programmed. This information will appear on the display along with the standard device label information.

A maximum of 20 characters (including spaces) can be entered. To enter alphanumeric characters from the keypad, repeatedly press the appropriate key until the desired character is displayed in the first position. For example, to enter the letter B, press the 2 (ABC) key three times to toggle through the characters 1, A, and B. Press the right arrow key to move the cursor one position to the right and repeat the process to enter the next character. To enter a space, press the * (QZ) key four times until a blank appears in the desired position. When all characters have been entered, press the Enter key to store the information. The display will return to the Edit Input Zone Screen #4, displaying the new information at the bottom of the screen.
Recall/Increment Function

In addition, the user may use the Recall/Increment function at any time when the cursor is on the first letter of the Description, Adjective or Noun field as follows:

- If the zero key is pressed, a 0 is placed in the first letter position.
- If the zero key is then pressed a second time with no intervening key actions, the entire field is replaced with the field entered for the previous device programmed, and the cursor moves to the last character of the field (Recall function). The Recalled Adjective or Noun field may now be changed letter-by-letter.
- If the zero key is pressed again with no other intervening key actions and the last character in the field is a number 0-9, the number is incremented by one. If the last character is a letter, it changes to a 0. If the last character goes from 9 to 0 and the characters to the left of the last character are also numbers, they are also incremented (overflow).
- The above increment function may be repeated with each press of the zero key.

As an example, the user could quickly enter ‘FLR_3_ROOM_305’ as follows:

1. The cursor is on the first letter of the Adjective field. Press the zero key twice to display FLR_3.
2. With the cursor on the first letter of the Noun field, press the zero key twice to recall the display ROOM_304. The cursor automatically jumps from the first to the last letter of the Noun field.
3. With the cursor on the last letter of the Noun field, press the zero key again to increment the room number to 305.
4. Press the Enter key to store the information.

3.5.2 NAC (Notification Appliance Circuit)

The options for the NACs on the control panel main circuit board can be configured by pressing 2 while viewing Programming Screen #2. The following screens will be displayed:

The Notification Appliance Circuits can be configured independently by pressing 1 for NAC 1, 2 for NAC 2, 3 for NAC 3, or 4 for NAC 4.

To program an NAC circuit, press the number corresponding to the NAC to be programmed. The following screens will be displayed for each selection:

- **Enabled**
 - Pressing 1 while viewing NAC Screen #1 will cause the display to change to Enabled No. This will prevent the selected main circuit board NAC from activating its devices. Each press of the 1 key will cause the display to toggle between Enabled Yes and Enabled No.
 - Note that if a circuit is disabled, a trouble will be logged on the FACP until the circuit is enabled.

- **Coding**
 - The Coding feature allows the programmer to select the type of output that the main circuit board notification appliances will generate when activated. Pressing 2 while viewing NAC Screen #1 will cause the following displays to appear:

 - **Coding Screen #1**
 - 1=STEADY
 - 2=MARCH TIME
 - 3=CALIFORNIA

 - **Coding Screen #2**
 - 1=TEMPORAL
 - 2=Two Stage 3 Min
 - 3=Two Stage 5 Min

 - **Coding Screen #3**
 - 1=SYNC SYSTEM SENS
 - 2=SYNC WHELLOCK
 - 3=SYNC GENTEX

 - **Coding Screen #4**
 - 1=SYNC FARADAY
 - 2=SYNC AMSECO

The programmer can select the notification appliance output by pressing the number corresponding to the desired output. The coding selections are:

- Steady - a continuous output with no coding
- March Time - 120 ppm (pulse-per-minute) output
- California - 10 seconds on and 5 seconds off
- Temporal - ½ second on, ½ second off, ½ second on, ½ second off, ½ second on, ½ second off
- Two Stage 3 Minutes or 5 Minutes - refer to “Two Stage Operation” on page 65 for a description of this feature
- Synchronized output for System Sensor, Wheelock, Gentex, Faraday or Amseco - Refer to “Synchronized NAC Operation” on page 65 for additional information.
Selection of one of the above options will cause the control panel to store the information in memory and return the display to NAC Screen #1, which will display the new coding choice.

Two Stage Operation

Two Stage operation consists of the following:
- 1st stage output - 20 ppm (pulse-per-minute) coding
- 2nd stage output - Temporal coding as described above
- Acknowledge button functions as the automatic alarm signal cancel button

If Two Stage operation is programmed as the Coding option, the following sequence of events will occur during an alarm.
1. The on-board NACs will activate with a 1st stage output upon activation of any alarm.
2. If, after the programmed time of 3 or 5 minutes, the Acknowledge switch has **not** been pressed, all NACs presently in 1st stage activation will go to 2nd stage activation.
3. If an Acknowledge switch has been pressed, the Alarm LED will turn from flashing to steady. Any NACs currently in 1st stage activation will remain in 1st stage. Pressing the Acknowledge switch does not affect NACs already in 2nd stage activation.
4. If another alarm point is activated and the countdown timer is counting, the alarm point will have no effect on the NACs.
5. If another alarm point is activated and the countdown timer has stopped counting due to the Acknowledge switch being pressed, the countdown timer will restart and the NACs will respond as outlined in step 1. NACs already in 2nd stage activation will not be affected.

Synchronized NAC Operation

Synchronization is a panel feature that controls the activation of notification appliances in such a way that all devices will turn on and off at exactly the same time. This is particularly critical when activating strobes which must be synchronized to avoid random activation and a potential hazard or confusion. The FACP can be programmed to operate with a variety of manufacturer’s devices.
Maximum Number of Strobes for Synchronization

The maximum current draw for a Notification Appliance Circuit cannot exceed 2.5 amps for models with the FLPS-3 power supply or 3.0 amps for models with the FLPS-7 power supply (refer to the AC Power section under “Specifications” on page 13). Refer to the manufacturer’s documentation supplied with the Strobes to determine the maximum current draw for each strobe and ensure that the circuit maximum is not exceeded.

To ensure proper strobe and circuit operation, there is also a limit to the number of strobes that can be attached to each circuit. Following is a list of the strobes that have been tested with this FACP and the maximum number that can be connected to each NAC. Make sure that the NAC maximum current is not exceeded:

<table>
<thead>
<tr>
<th>Strobe Manufacturer</th>
<th>FACP with FLPS-3 Power Supply: Maximum Number of Strobes</th>
<th>FACP with FLPS-7 Power Supply: Maximum Number of Strobes</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Sensor</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td>Wheelock</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>Gentex</td>
<td>22</td>
<td>39</td>
</tr>
<tr>
<td>Faraday</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Amseco</td>
<td>19</td>
<td>34</td>
</tr>
</tbody>
</table>

Silence

Pressing 1 while viewing NAC Screen #2 will cause the following screen to be displayed:

Pressing 1 while viewing the Silenceable Screen will program the selected NAC as a silenceable circuit. This will allow the NAC to be silenced by pressing the Alarm Silence key or by the Auto Silence feature.

Pressing 2 while viewing the Silenceable Screen will program the selected NAC as a nonsilenceable circuit. This will prevent the selected main circuit board NAC from being silenced by pressing the Alarm Silence key or by the Auto Silence feature.

Pressing 3 while viewing the Silenceable Screen will program the selected NAC as a synchronized mute circuit. Refer to “Synchronized NAC Operation” on page 65 for a description of synchronization.

Important: When a Notification Appliance Circuit with a mix of audible and visual devices is programmed for Sync Mute, only the audible devices will be turned off if the Silence key is pressed or if the Autosilence feature is enabled. The visual devices (strobes, etc.) will continue to operate.

Auto Silence

The Auto Silence feature, when enabled, automatically silences all main circuit board silenceable notification appliances after a programmed length of time. To enable this feature and program the time delay before Auto Silence activation, press 2 while viewing NAC Screen #2. The following screens will be displayed:

To disable the Auto Silence feature, press 1 for No while viewing Auto Silence Screen #1. To enable the Auto Silence feature, press the number corresponding to the time delay which will elapse before Auto Silence activates. This information will be stored in memory and the display will return to NAC Screen #1.

Silence Inhibited

The Silence Inhibit feature, when enabled, prevents the silencing of the selected main circuit board NAC for a period of one minute. Resetting the FACP will also be prevented for one minute while the NAC programmed for silence inhibit is activated. Pressing 3 while viewing NAC Screen #2 will cause a screen to be displayed with the options 1=No Silence Inhibit and 2=1 Min. Silence Inhibit. Pressing 1 will disable the Silence Inhibit feature while pressing 2 will enable a 1 minute Silence Inhibit for the selected Output.
3.5.3 Relays

Pressing 3 while viewing Programming Screen #1 will allow the programmer to configure the three main circuit board Form-C relays. The following screen will be displayed:

![Relay Screen #1]

To program Relay 1, 2 or 3, press the number corresponding to the selected relay. The following screens will appear for each relay to be programmed:

![Relay Screen #2]

While viewing the selected screen, press the number corresponding to the desired relay type to program the main circuit board relay. The choice will be stored in memory and the display will return to the Relay Type Screen which will show the programmed type choice. Press the Escape key to return to the Relays Selection Screen and repeat the preceding procedure for the remaining relays.

NOTE: A relay programmed with the Silenceable Alarm type will deactivate when the FACP Alarm Silenced LED is illuminated.

3.5.4 System Setup

System Setup allows the programmer to configure the following control panel features:

- **Timers:** This option allows the programmer to set the PAS (Positive Alarm Sequence) time delay, Pre-Signal time delay and Waterflow time delay
- **Banner:** This option allows the user to change the top two lines of the LCD display from the factory default readout, which is blank, to a user defined readout when the control panel is in Normal condition
- **Time-Date:** This feature allows the programmer to set the time, display format (24 hr or 12 hr), date and daylight savings time feature into the FACP memory
- **Trouble Reminder:** This feature, when enabled, provides an audible reminder that an alarm or trouble still exists on the FACP after the control panel has been silenced. The control panel piezo sounder will pulse once every 15 seconds during an alarm and every two minutes during a trouble condition, after the Alarm Silence or Acknowledge key is pressed. The piezo will continue to sound at these rates until the alarm or trouble condition is cleared. If the Trouble Reminder feature is not enabled and a trouble condition is not cleared within 24 hours, the panel will reactivate the trouble sounder and retransmit the trouble condition to the central station if connected
- **Canadian Option:** This option allows the automatic programming of the FACP to Canadian specifications (refer to “Canadian Option” on page 70).

Important! For Canadian Applications, this option must be set to ON prior to any other panel programming.

- **Charger Disable:** This option allows the programmer to disable the onboard battery charger in the event an external battery charger is being used

Pressing 1 for System Setup, while viewing Programming Screen #2, will cause the following screens to be displayed:

![System Setup Screen #1]

![System Setup Screen #2]

Timers

Timer delays for PAS, Pre-signal and Waterflow activation can be programmed by pressing 1 while viewing System Setup Screen #1. The following screen will be displayed:

![Timer Screen #1]

![Timer Screen #2]
PAS (Positive Alarm Sequence) Delay

The factory default setting for PAS is 000 for no delay. To select a PAS delay of 001 to 180 seconds for all devices programmed for PAS, press 1 while viewing Timer Screen #1. The following display will appear:

![PAS Delay Screen](image)

A flashing cursor is positioned in the lower left corner of the display. Enter a delay time consisting of three digits, such as 005 for five seconds. Upon entering the third digit, the time delay will be stored in the control panel memory and the display will return to the Delay Screen which will indicate the new delay time.

Pre-signal Delay

The factory default setting for Pre-signal delay is 000 for no delay. To select a Pre-signal delay of 001 to 180 seconds for all devices programmed for Pre-signal, press 2 while viewing Timer Screen #1. The following screen will be displayed:

![Pre-signal Delay Screen](image)

A flashing cursor is positioned in the lower left corner of the display. Enter a delay time consisting of three digits, such as 009 for nine seconds. Upon entering the third digit, the time delay will be stored in the control panel memory and the display will return to the Delay Screen which will indicate the new delay time.

Note that the FACP can have both PAS and Pre-signal timers programmed with values but a zone can only use either the PAS or Pre-signal feature, but not both.

Waterflow Delay

A delay can be added prior to declaring a waterflow type of alarm. Be careful to include any built-in delays of the waterflow device. The factory default setting for Waterflow delay is 000 for no delay. To select a Waterflow delay of 01 to 90 seconds for all devices programmed for Waterflow delay, press 3 while viewing Timer Screen #1. The following screen will be displayed:

![Waterflow Delay Screen](image)

A flashing cursor is positioned in the lower left corner of the display. Enter a delay time consisting of two digits, such as 25 for twenty-five seconds. Upon entering the second digit, the time delay will be stored in the control panel memory and the display will return to the Delay Screen which will indicate the new delay time.

AC Loss Delay

The reporting of a loss of AC power to a central station can be delayed by programming the length of the desired delay. Press 1 while viewing Timer Screen #2 to display the following:

![AC Loss Delay Screen](image)

A flashing cursor will appear in the lower left corner of the display. The factory default setting is 02 hours. Type the two digit AC loss reporting delay in hours (00 to 24 hour delay). When the second digit is entered, the display will return to AC Loss Delay Screen #1.

Note: Upon the loss of AC power at the control panel, relays programmed for AC Loss will transfer immediately, regardless of the AC Loss Delay setting. If no troubles other than AC Loss exist in the panel, the System Trouble relay will delay activation for the duration of the AC Loss Delay setting.
Banner

The top line of the display, which appears when the control panel is in normal mode, can be changed by using the Banner option. Pressing 2 while viewing System Setup Screen #1 will cause the following to be displayed:

![Select Banner Screen](image)

Pressing 1 while viewing the Select Banner Screen will display the following screen:

![User Defined Banner Screen #1](image)

This screen allows the user to select the factory default Banner which will be displayed when the system is in Normal Mode of operation. Press the Enter key to accept this as the default display. Press the Escape key to cancel and return to the Select Banner Screen.

Pressing 2 while viewing the Select Banner Screen will display the following screen:

![User Defined Banner Screen #2](image)

This screen allows the programmer to enter a custom banner. A flashing cursor will appear in the bottom left corner of the display. A maximum of 20 characters (including spaces) can be entered into the screen. After entering up to 20 characters in the screen, press Enter to store the entry. To quickly clear the current banner, press the CLR key.

To enter alphanumeric characters from the keypad, repeatedly press the appropriate key until the desired character is displayed in the first position. For example, to enter the letter B, press the 2 (ABC) key three times to toggle through the characters 1, A, and B. Press the right arrow key to move the cursor one position to the right and repeat the process to enter the next character. To enter a space, press the * (QZ) key four times to place a blank in the desired position. When all characters have been entered, press the Enter key to store the information. The display will return to the Select Banner Screen.

Time-Date

The control panel time and date can be changed by pressing 3 while viewing the System Setup Screen #1.

The following screen will be displayed:

![Time-Date Screen #1](image)

![Time-Date Screen #2](image)

- **Time**

To change the time, press 1 while viewing the Time-Date Screen. The following screen will be displayed:

![Time Screen](image)

A flashing cursor is located toward the top left of the display. Below the cursor is the current time. To change the time, enter the two-digit hours followed by the two-digit minutes. The cursor will move one position to the right each time a digit is entered. After the last minutes digit is entered, the cursor will again move one position to the right. At this point enter 1 for AM or 2 for PM. The display will then return to the Time-Date Screen which will show the new time entry. If an error is made while entering a digit, press the CLR key to delete the entire entry and beginning again.
Date

To change the date, press 2 while viewing the Time-Date Screen. The following screen will be displayed:

A flashing cursor is located toward the top left of the display. Below the cursor is the current date. To change the date, enter the two-digit month followed by the two-digit day and then the two-digit year (18 for 2018, 19 for 2019 etc.). The cursor will move one position to the right each time a digit is entered. After the last year digit is entered, the display will return to the Time-Date Screen which will show the new date entry. If an error is made while entering a digit, press the CLR key to delete the entire entry and beginning again.

Clock Format

The clock can be configured to display 12 hour (AM & PM) or 24 hour (military) time. Pressing 3 while viewing the Time-Date screen will cause the display to toggle between 12HR and 24HR. Select 12HR for 12 hour display or 24HR for 24 hour display.

Daylight Savings Time

Pressing 1 while viewing Time-Date Screen #2 will cause the following screens to be displayed:

Pressing 1 while viewing Daylight Savings Screen #1 will cause the display to toggle between Enabled Yes and Enabled No. The control panel will automatically update the time for daylight savings time when Enabled Yes is selected.

Pressing 2 while viewing Daylight Savings Screen #1 will display another screen which allows the programmer to select the month that daylight savings time will begin. In this sub-screen, pressing 1 will select March, 2 will select April, and 3 will select May.

Pressing 3 while viewing Daylight Savings Screen #1 will display two sub-screens which allow the programmer to select the week of the month that daylight savings time will begin. In the first sub-screen, pressing 1 will select the first week, 2 will select the second week, and 3 will select the third week, while in the second sub-screen, pressing 1 will select the fourth week, and 2 will select the last week of the selected month.

Pressing 1 while viewing Daylight Savings Screen #2 will display another screen which allows the programmer to select the month that daylight savings time will end. In this sub-screen, pressing 1 will select September, 2 will select October, and 3 will select November.

Pressing 2 while viewing Daylight Savings Screen #2 will display two sub-screens which allow the programmer to select the week of the month that daylight savings time will end. In the first sub-screen, pressing 1 will select the first week, 2 will select the second week, and 3 will select the third week, while in the second sub-screen, pressing 4 will select the fourth week, and 5 will select the last week of the selected month.

Trouble Reminder

The Trouble Reminder feature causes the control panel piezo to sound a reminder ‘beep’ for alarms and troubles, after the panel has been silenced. Refer to “System Setup” on page 67, for a detailed description of this feature. Pressing 1 while viewing System Setup Screen #2 will cause the display to toggle to Trouble Rem Yes, which enables this feature. Each press of the 1 key will cause the display to toggle between Trouble Rem Yes and Trouble Rem No.

Note that if the Trouble Reminder feature is not enabled, a trouble existing on the panel for more than 24 hours will cause the FACP to resound the trouble sounder.

Canadian Option

Pressing 2 while viewing System Setup Screen #2 will configure the FACP to comply with Canadian requirements. The display will change to Canadian Opt. On. Each press of the 2 key will cause the display to toggle between Canadian Opt. On and Canadian Opt. Off. The factory default setting is Canadian Opt. Off.

For Canadian applications, remote annunciation must be done using the secondary ANN-BUS.

The Canadian Options configures the FACP with the following as required by Canada:

- The following zone type codes are not available:
 - non-latching supervisory
 - non-latching drill
 - process monitor (latching or non-latching)
 - hazard
 - tornado
Charger Disable

Pressing 3 while viewing System Setup Screen #2 will allow the programmer to enable or disable the onboard battery charger. If an external battery charger is being used, the onboard battery charger must be disabled. Each press of the 3 key will toggle between Chgr Disable No and Chgr Disable Yes.

3.5.5 Option Modules

Options available for the FACP include annunciators, printer connection for acquiring hardcopy printouts of panel data and onboard DACT.

Pressing 2 while viewing Programming Screen #2 will display the following screen:

ANN-BUS

Pressing 1 while viewing the Option Modules screen will cause the control panel to display the following screens.

A variety of ANN-BUS option modules can be installed in the FACP. These devices communicate with the FACP over the ANN-BUS terminals on the control panel.

- **ANN-BUS Enabled**

The ANN-BUS must be enabled if any modules are installed on the ANN-BUS terminals. To enable the ANN-BUS, press 1 while viewing ANN-BUS screen #1 so that the display reads ANN-BUS Enabled Yes. Each press of the 1 key will cause the display to toggle between ANN-BUS Enabled Yes and ANN-BUS Enabled No.

- **BUS Modules**

If an ANN-BUS module is installed, press 2 while viewing ANN-BUS screen #1 to select ANN-BUS addresses for the module(s). The following screen will be displayed.

Pressing the down arrow key will allow the programmer to view additional screens displaying Addresses 1 - 8. Pressing the number corresponding to the desired address will display a screen with technical information about the selected module.

In the technical information screen, pressing 1 for Type will display the following screens:

Press the number corresponding to the module type, if any, that is installed with the selected address. This will enable the module.
■ Auto-Configure

The ANN-BUS Auto-Configure features allows the programmer to quickly bring all installed ANN-BUS modules online. The software will search for all ANN-BUS modules and automatically program the device type and address into the system. Pressing 3 while viewing ANN-BUS Screen #1 will begin the Auto-Configure process and cause the following screen to be displayed:

![Auto-Configure Screen](image)

■ ANN-S/PG Options Screen

The Printer Option allows the user to configure the optional printer. Pressing 1 while viewing the ANN-BUS Screen #2 will display the following screens:

![Printer Options Screen #1](image)

![Printer Options Screen #2](image)

Pressing 1 for Port while viewing Printer Options screen #1 will allow the programmer to select between a Parallel and Serial Port for printer connection. Each press of the 1 key will cause the display to toggle between *Port PAR* (parallel) and *Port SER* (serial). It is important to note that the interface selected determines which options are available to the user.

If the Parallel Port option is selected, the user has the option to supervise the printer and select an offline timer for the supervision by pressing 2 for Printer Supervision while viewing Print Options screen #1. Each press of the 2 key will cause the display to toggle between *Printer Supv NO* for no supervision and *Printer Supv YES* for printer supervision. Note that this option is not selectable if the Serial Port option has been selected.

If the Parallel Port option is selected, the user has the ability to select an *Offline Timer* by pressing 3 while viewing Print Options screen #1. The resultant screen allows the programmer to program the *Offline Timer* for a delay of between 0 and 255 seconds before loss of printer supervision is reported as a trouble.

If the Serial Port option is selected, the *Printer Supv* and *Offline Timer* options will not be available. The Baud Rate, Data Bits, Parity and Stop Bits options are only available when the Serial Port option has been selected.

Pressing 1 for *Baud Rate* while viewing Printer Options screen #2 will cause a screen to appear which allow the user to select a Baud Rate of 19200, 9600, or 2400.

Pressing 2 for *Data Bits* while viewing Printer Options screen #2 will cause screens to appear which allow the user to select 5, 6, 7, or 8 Data Bits.

Pressing 3 for *Parity* while viewing Printer Options screen #2 will cause a screen to appear which allows the user to select between *No Parity*, *Even Parity*, or *Odd Parity*.

Pressing 1 for *Stop Bits* while viewing Printer Options screen #3 will cause a screen to appear which allows the user to select between 0.5, 1.0, or 2.0 Stop Bits.

■ ANN-I/O LED Zone Assignments

The information displayed by LEDs on every ANN-I/O module is not programmable and will therefore be as indicated in the following table.

<table>
<thead>
<tr>
<th>LED</th>
<th>Zone (any address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC Fault</td>
</tr>
<tr>
<td>2</td>
<td>General Alarm</td>
</tr>
<tr>
<td>3</td>
<td>General Supervisory</td>
</tr>
<tr>
<td>4</td>
<td>General Trouble</td>
</tr>
<tr>
<td>5</td>
<td>Alarm Silenced</td>
</tr>
<tr>
<td>6</td>
<td>Earth Fault</td>
</tr>
<tr>
<td>7</td>
<td>Battery Fault</td>
</tr>
<tr>
<td>8</td>
<td>Charger Fault</td>
</tr>
<tr>
<td>9</td>
<td>Disable</td>
</tr>
<tr>
<td>10</td>
<td>Maintenance</td>
</tr>
<tr>
<td>11</td>
<td>Zone 1 Alarm</td>
</tr>
<tr>
<td>12</td>
<td>Zone 2 Alarm</td>
</tr>
<tr>
<td>13</td>
<td>Zone 3 Alarm</td>
</tr>
<tr>
<td>14</td>
<td>Zone 4 Alarm</td>
</tr>
</tbody>
</table>
Pressing 2 while viewing ANN-BUS screen #2 will display the following screen:

The Piezo Enable option allows the programmer to select whether the piezo sounder on any installed ANN-80 module will ever sound. Pressing 1 while viewing the ANN-80 Options Screen #1 causes the display to toggle between Piezo Enable Yes and Piezo Enable No.

The Lock Enable option allows the programmer to select whether or not the ANN-80 annunciator must be unlocked by its key before any annunciator key presses will function. Pressing 2 while viewing the ANN-80 Options Screen #1 causes the display to toggle between Lock Enable Yes (annunciator must be unlocked for keys to function) and Lock Enable No (lock position is ignored).

The Acknowledge Button Enable (ACK BTN ENABLE) option allows the programmer to select whether the Ack/Step button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 3 while viewing the ANN-80 Options Screen #1 causes the display to toggle between Ack Btn Enable Yes (Ack/Step button functions normally) and Ack Btn Enable No (Ack/Step button never functions).

The Silence Button Enable (SIL BTN ENABLE) option allows the programmer to select whether the Silence button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 1 while viewing the ANN-80 Options Screen #2 causes the display to toggle between Sil Btn Enable Yes (Silence button functions normally) and SilBtn Enable No (Silence button never functions).

The Reset Button Enable (RST BTN ENABLE) option allows the programmer to select whether the Reset button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 2 while viewing the ANN-80 Options Screen #2 causes the display to toggle between Rst Btn Enable Yes (Reset button functions normally) and RstBtn Enable No (Reset button never functions).

The Drill Button Enable (DRL BTN ENABLE) option allows the programmer to select whether the Drill button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 3 while viewing the ANN-80 Options Screen #2 causes the display to toggle between Drl Btn Enable Yes (Drill button functions normally) and DrlBtn Enable No (Drill button never functions).
ANN-RLY Options Screen

Pressing 3 for **ANN-RLY Options** while viewing ANN-BUS Screen #2 will cause the following screen to be displayed:

![ANN-RLY Options Screen](image)

The ANN-RLY module provides ten Form-C relays which can be programmed for various functions. The initial screen displays Relays 1 through 3. Pressing the down arrow key will display the remaining relays for this module.

To program any of the ANN-RLY relays, while viewing the appropriate ANN-RLY Option screen, press the number key corresponding to the relay to be programmed. Following is a list of the available programming options for each relay:

- General Alarm
- General Trouble
- General Supervisory
- AC Loss
- Waterflow Delay
- Input Zone 1
- Input Zone 2
- Input Zone 3
- Input Zone 4
- Input Zone 5
- Input Zone 6
- Input Zone 7
- Input Zone 8
- Input Zone 9
- Input Zone 10
- Silenceable Alarm
- Not Assigned

ANN-AUDIO Options Screen

Pressing 1 for **ANN-AUDIO Options** while viewing ANN-BUS Screen #3 will cause the following screen to be displayed:

![ANN-AUDIO Options Screen](image)

This screen shows the Input Zone that has been assigned to be the All-Call Zone. In this example, Zone 1 is the All-Call Zone. The All-Call Zone can be changed by pressing the 1 key while viewing the ANN-AUDIO Options Screen. The following screens will be displayed.

These screens allow the programmer to select which Input Zone will be assigned as the All-Call Zone.

ANN-SEC Enable

The ANN-SEC option must be enabled if any modules are connected to the ANN-SEC option card at J13. To enable the Secondary ANN-BUS, press 2 while viewing ANN-BUS Screen #3 so that the display reads **ANN-SEC ENABLE YES**. Each press of the 2 key will cause the display to toggle between **ANN-SEC ENABLE YES** and **ANN-SEC ENABLE NO**. The factory default setting is **ANN-SEC ENABLE NO**.
The Onboard DACT (Digital Alarm Communicator/Transmitter) provides communication to a central station. Pressing 2 while viewing the Option Module Screen will cause the following screens to be displayed:

Primary Phone

Press 1 while viewing Onboard DACT Screen to program the type of primary phone line being connected to the DACT. The following screen will be displayed:

Press 1 to select Touchtone dialing, 2 to select Rotary dialing with a make/break ratio of 67/33, or 3 to select Rotary dialing with a make/break ratio of 60/40.

Secondary Phone

Press 2 while viewing Onboard DACT Screen 1 to program the type of secondary phone line being connected to the DACT. The following screen will be displayed:

Press 1 to select Touchtone dialing, 2 to select Rotary dialing with a make/break ratio of 67/33, or 3 to select Rotary dialing with a make/break ratio of 60/40.

Central Station

Central Station programming configures the control panel DACT for contacting the central station. Pressing 3 while viewing Onboard DACT Screen 1 will cause the following screens to be displayed:
Reporting

To enable the DACT for reporting FACP activity to the central station, press 1 while viewing Central Station Screen #1 so the display reads *Reporting Yes*. Each press of the 1 key will toggle the display between *Reporting Yes* and *Reporting No*.
Report Style

The DACT can be programmed to transmit reports to primary and/or secondary central station phone numbers as a backup. Press 2 while viewing Central Station Screen #1 to display the following screen:

```
REPORT STYLE
1=BACKUP ONLY
2=BOTH
3=FIRST AVAILABLE
```

Press 1 to have all reports transmitted to the central station secondary phone number as a backup only if the primary phone line fails, 2 to transmit all reports to both the primary and secondary phone numbers all of the time, or 3 to send reports to the first available phone number.
Central Station Primary and Secondary Phone Numbers

Pressing 1 for Primary or 2 for Secondary, while viewing Central Station Screen #2, will display the following screens.

Note that the following information must be entered for both the Primary and Secondary Central Station Phone Numbers.
Pressing 1 while viewing Primary/Secondary Screen #1 will cause the following screens to be displayed:

The test report sent to the Central Station phone number may be sent once every 6, 8, 12 or 24 hours. Select the desired Test Time Interval by pressing the corresponding digit in the screens shown above.
Account Code

Pressing 2 while viewing Primary/Secondary Screen #1 will cause the following screen to be displayed:

Account Codes Screen

The Account Code, which is assigned by a Central Station, depends on the communication format being used. The Account Code screen will have a flashing cursor in the lower left corner. Program the supplied 4-digit account code using 0 - 9 and A - F keys. Enter the first digit, then press the right arrow key to move the cursor to the right, one position. Repeat the process until all digits are entered.
24 Hour Test Time

Pressing 3 while viewing Primary/Secondary Screen #1 will cause the following screen to be displayed:

Use the 24 Hour Test Time screen to program the time that the DACT will transmit the 24 Hour Test to the Central Station. A flashing cursor will appear in the lower left corner of the screen. Enter a four digit number representing the test time using military time (0000 = midnight and 2359 = 11:59PM).
Phone Number

Pressing 1 while viewing Primary/Secondary Screen #2 will cause the following screen to be displayed:

The Phone Number screen is used to enter the Central Station phone number that the DACT will be contacting. A maximum of 20 characters can be entered with valid entries being 0 - 9 and A - C where A = *, B = # and C = look for secondary dial tone for up to 2 seconds (then dial anyway).

A flashing cursor will appear in the lower left corner of the screen. Enter the first digit then press the right arrow key to move the cursor to the right one position. Enter the second digit and repeat the process until all digits are entered. Press the Enter key to store the phone number in memory.

Enter the digits as you would like the number to be dialed. For example, if it’s necessary to dial 9 before dialing a number outside the building, you may wish to pause after dialing 9. Enter 9 followed by D for a three second pause, or E for a five second pause then the phone number followed by an F to indicate the end of the number.
Communication Format

Pressing 1 while viewing Primary/Secondary Screen #3 will cause the following screen to be displayed:

The Communication Format is determined by the type of receiver that the DACT is transmitting to. Consult your Central Station for proper selection or consult our factory representatives. For any format chosen, the control panel automatically programs all of the event codes.

Select the Communication Format by pressing the corresponding number key while viewing the Comm Format screen. The following table describes each format:

<table>
<thead>
<tr>
<th>Screen Selection</th>
<th>Communication Format Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEMCO CONTACT ID</td>
<td>Contact ID, DTMF, 1400/2300 ACK</td>
</tr>
<tr>
<td>SIA-DCS-8</td>
<td>Security Industry Association, 8 messages per call</td>
</tr>
<tr>
<td>SIA-DCS-20</td>
<td>Security Industry Association, 20 messages per call</td>
</tr>
</tbody>
</table>

Table 3.2 Communication Formats
Event Codes

Pressing 2 while viewing Primary/Secondary Screen #3 will cause the following screen to be displayed:

![Event Code Screen]

Pressing the down arrow key allows viewing of all Events associated with the selected Communication Format. Pressing the number corresponding to the event displayed in each screen will display its default active and restoral event codes which can be customized by the programmer.

For example, if Ademco Contact ID is the selected format, pressing 3 for Zone 3 Alarm will display the following screen which allows the Event Code to be changed from the default value.

![Zone 3 Active 115]

The following table lists the Zone Alarm Types that can be programmed for zones 1 through 10 and the corresponding Event Codes for Ademco Contact ID and SIA DCS Formats. Note that Table 3.4 on page 85, Table 3.5 on page 86, Table 3.6 on page 87 and Table 3.7 on page 89 list the default settings for Zone 1 through Zone 10. These can be changed to any of the Types listed in Table 3.3.

NOTE: The third character in the SIA-DCS Format (x in the table below) represents the zone number.

<table>
<thead>
<tr>
<th>Zone Alarm Type</th>
<th>Ademco Contact ID</th>
<th>SIA-DCS Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-Station</td>
<td>115</td>
<td>FAx</td>
</tr>
<tr>
<td>Waterflow</td>
<td>113</td>
<td>SAx</td>
</tr>
<tr>
<td>Waterflow Nonsilenceable</td>
<td>113</td>
<td>SAx</td>
</tr>
<tr>
<td>Combo</td>
<td>113</td>
<td>SAx</td>
</tr>
<tr>
<td>Combo AutoResettable Supervisory</td>
<td>113</td>
<td>SAx</td>
</tr>
<tr>
<td>2-Wire Detector</td>
<td>111</td>
<td>FAx</td>
</tr>
<tr>
<td>Normally Open Contact</td>
<td>110</td>
<td>UAx</td>
</tr>
<tr>
<td>Fire</td>
<td>110</td>
<td>FAx</td>
</tr>
<tr>
<td>Tamper</td>
<td>144</td>
<td>TAx</td>
</tr>
<tr>
<td>Supervisory</td>
<td>200</td>
<td>FSx</td>
</tr>
<tr>
<td>Supervisory AutoResettable</td>
<td>200</td>
<td>FSx</td>
</tr>
<tr>
<td>Medic-Alert</td>
<td>100</td>
<td>MAx</td>
</tr>
<tr>
<td>Hazard-Alert</td>
<td>150</td>
<td>PAx</td>
</tr>
<tr>
<td>Tornado-Alert</td>
<td>150</td>
<td>PAx</td>
</tr>
<tr>
<td>Proc-Mon</td>
<td>200</td>
<td>LAx</td>
</tr>
<tr>
<td>Procmon-AR</td>
<td>200</td>
<td>LAx</td>
</tr>
<tr>
<td>AC-Loss-Mon</td>
<td>301</td>
<td>ATx</td>
</tr>
<tr>
<td>Drill-Switch</td>
<td>604</td>
<td>Flx</td>
</tr>
<tr>
<td>Drill-Switch AutoResettable</td>
<td>604</td>
<td>Flx</td>
</tr>
</tbody>
</table>

Table 3.3 Zone Alarm Type Event Codes

The following tables list all of the Events and their default Event Codes for the Ademco Contact ID and SIA-DCS Communication Formats.

NOTE: A detector freeze condition will be reported as a Supervisory Event Code.
Ademco Contact ID Format - Primary Central Station Phone Number

The information shown in Table 3.4 is automatically programmed for the Primary Central Station phone number Event Codes when Ademco Contact ID Format is selected. To disable event reporting, select the desired Event Code to be disabled and press 0 or Clear and then Enter to disable it. (Enter must be pressed to save the selection. Pressing Escape will not save the selection).

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Event Code Settings</th>
<th>Zone Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary # Zone 1 - 10 Alarm</td>
<td>115</td>
<td>001 - 010</td>
</tr>
<tr>
<td>Primary # Zone 1 - 10 Disabled</td>
<td>570</td>
<td>001 - 010</td>
</tr>
<tr>
<td>Primary # Drill</td>
<td>604</td>
<td>000</td>
</tr>
<tr>
<td>Primary # AC Fault</td>
<td>301</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Zone 1 - 10 Fault</td>
<td>380</td>
<td>001 - 010</td>
</tr>
<tr>
<td>Primary # Zone 1 - 10 Dirty</td>
<td>380</td>
<td>001 - 010</td>
</tr>
<tr>
<td>Primary # Earth Fault</td>
<td>310</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Low Battery Fault</td>
<td>302</td>
<td>000</td>
</tr>
<tr>
<td>Primary # No Battery Fault</td>
<td>311</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Telco Primary Line Fault</td>
<td>351</td>
<td>001</td>
</tr>
<tr>
<td>Primary # Telco Secondary Line Fault</td>
<td>352</td>
<td>002</td>
</tr>
<tr>
<td>Primary # NAC #1 Fault</td>
<td>321</td>
<td>001</td>
</tr>
<tr>
<td>Primary # NAC #2 Fault</td>
<td>322</td>
<td>002</td>
</tr>
<tr>
<td>Primary # NAC #3 Fault</td>
<td>326</td>
<td>003</td>
</tr>
<tr>
<td>Primary # NAC #4 Fault</td>
<td>327</td>
<td>004</td>
</tr>
<tr>
<td>Primary # NAC #1 Disable</td>
<td>521</td>
<td>001</td>
</tr>
<tr>
<td>Primary # NAC #2 Disable</td>
<td>522</td>
<td>002</td>
</tr>
<tr>
<td>Primary # NAC #3 Disable</td>
<td>526</td>
<td>003</td>
</tr>
<tr>
<td>Primary # NAC #4 Disable</td>
<td>527</td>
<td>004</td>
</tr>
<tr>
<td>Primary # Charger Fault</td>
<td>300</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Comm Trouble Primary #</td>
<td>354</td>
<td>001</td>
</tr>
<tr>
<td>Primary # Comm Trouble Secondary #</td>
<td>354</td>
<td>002</td>
</tr>
<tr>
<td>Primary # Printer Fault</td>
<td>336</td>
<td>000</td>
</tr>
<tr>
<td>Primary # ANN-Bus Fault</td>
<td>330</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Option Card Fault</td>
<td>333</td>
<td>000</td>
</tr>
<tr>
<td>Primary # CS CALC Fault</td>
<td>304</td>
<td>000</td>
</tr>
<tr>
<td>Primary # System Off Normal</td>
<td>308</td>
<td>000</td>
</tr>
<tr>
<td>Primary # System Test Message</td>
<td>602</td>
<td>000</td>
</tr>
<tr>
<td>Primary # System Abnormal Test Message</td>
<td>608</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Upload/Download Request</td>
<td>411</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Upload Successful</td>
<td>416</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Download Successful</td>
<td>412</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Upload/Download Failed</td>
<td>413</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Voice EVAC Fault</td>
<td>330</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Power Supply Sync Fault</td>
<td>300</td>
<td>000</td>
</tr>
</tbody>
</table>

Table 3.4 Ademco Contact ID Primary # Event Codes
Ademco Contact ID Format - Secondary Central Station Phone Number

The information shown in Table 3.5 is automatically programmed for the Secondary Central Station phone number Event Codes when Ademco Contact ID Format is selected. To disable event reporting, select the desired Event Code to be disabled and press 0 or Clear and then Enter to disable it. (Enter must be pressed to save the selection. Pressing Escape will not save the selection).

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Event Code Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary # Zone 1 - 10 Alarm</td>
<td>115</td>
</tr>
<tr>
<td>Secondary # Zone 1 - 10 Disabled</td>
<td>570</td>
</tr>
<tr>
<td>Secondary # Drill</td>
<td>604</td>
</tr>
<tr>
<td>Secondary # AC Fault</td>
<td>301</td>
</tr>
<tr>
<td>Secondary # Zone 1 - 10 Fault</td>
<td>380</td>
</tr>
<tr>
<td>Secondary # Zone 1 - 10 Dirty</td>
<td>380</td>
</tr>
<tr>
<td>Secondary # Earth Fault</td>
<td>310</td>
</tr>
<tr>
<td>Secondary # Low Battery Fault</td>
<td>302</td>
</tr>
<tr>
<td>Secondary # No Battery Fault</td>
<td>311</td>
</tr>
<tr>
<td>Secondary # Telco Primary Line Fault</td>
<td>351</td>
</tr>
<tr>
<td>Secondary # Telco Secondary Line Fault</td>
<td>352</td>
</tr>
<tr>
<td>Secondary # NAC #1 Fault</td>
<td>321</td>
</tr>
<tr>
<td>Secondary # NAC #2 Fault</td>
<td>322</td>
</tr>
<tr>
<td>Secondary # NAC #3 Fault</td>
<td>326</td>
</tr>
<tr>
<td>Secondary # NAC #4 Fault</td>
<td>327</td>
</tr>
<tr>
<td>Secondary # NAC #1 Disable</td>
<td>521</td>
</tr>
<tr>
<td>Secondary # NAC #2 Disable</td>
<td>522</td>
</tr>
<tr>
<td>Secondary # NAC #3 Disable</td>
<td>526</td>
</tr>
<tr>
<td>Secondary # NAC #4 Disable</td>
<td>527</td>
</tr>
<tr>
<td>Secondary # Charger Fault</td>
<td>300</td>
</tr>
<tr>
<td>Secondary # Comm Trouble Primary #</td>
<td>354</td>
</tr>
<tr>
<td>Secondary # Comm Trouble Secondary #</td>
<td>354</td>
</tr>
<tr>
<td>Secondary # Printer Fault</td>
<td>336</td>
</tr>
<tr>
<td>Secondary # ANN-BUS Fault</td>
<td>330</td>
</tr>
<tr>
<td>Secondary # Option Card Fault</td>
<td>333</td>
</tr>
<tr>
<td>Secondary # CS CALC Fault</td>
<td>304</td>
</tr>
<tr>
<td>Secondary # System Off Normal</td>
<td>308</td>
</tr>
<tr>
<td>Secondary # System Test Message</td>
<td>602</td>
</tr>
<tr>
<td>Secondary # System Abnormal Test Message</td>
<td>608</td>
</tr>
<tr>
<td>Secondary # Upload/Download Request</td>
<td>411</td>
</tr>
<tr>
<td>Secondary # Upload Successful</td>
<td>416</td>
</tr>
<tr>
<td>Secondary # Download Successful</td>
<td>412</td>
</tr>
<tr>
<td>Secondary # Upload/Download Failed</td>
<td>413</td>
</tr>
<tr>
<td>Secondary # Voice EVAC Fault</td>
<td>330</td>
</tr>
<tr>
<td>Secondary # Power Supply Sync fault</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 3.5 Ademco Contact ID Secondary # Event Codes
SIA-DCS Format - Primary Central Station Phone Number

The information shown in Table 3.6 is automatically programmed for the Primary Central Station phone number Event Codes when SIA-DCS Format is selected. To disable event reporting, select the desired Event Code to be disabled and press 0 or Clear and then Enter to disable it. (Enter must be pressed to save the selection. Pressing Escape will not save the selection).

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Event Code Settings</th>
<th>Restoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary # Zone 1 Alarm</td>
<td>FA1</td>
<td>FH1</td>
</tr>
<tr>
<td>Primary # Zone 2 Alarm</td>
<td>FA2</td>
<td>FH2</td>
</tr>
<tr>
<td>Primary # Zone 3 Alarm</td>
<td>FA3</td>
<td>FH3</td>
</tr>
<tr>
<td>Primary # Zone 4 Alarm</td>
<td>FA4</td>
<td>FH4</td>
</tr>
<tr>
<td>Primary # Zone 5 Alarm</td>
<td>FA5</td>
<td>FH5</td>
</tr>
<tr>
<td>Primary # Zone 6 Alarm</td>
<td>FA6</td>
<td>FH6</td>
</tr>
<tr>
<td>Primary # Zone 7 Alarm</td>
<td>FA7</td>
<td>FH7</td>
</tr>
<tr>
<td>Primary # Zone 8 Alarm</td>
<td>FA8</td>
<td>FH8</td>
</tr>
<tr>
<td>Primary # Zone 9 Alarm</td>
<td>FA9</td>
<td>FH9</td>
</tr>
<tr>
<td>Primary # Zone 10 Alarm</td>
<td>FA10</td>
<td>FH10</td>
</tr>
<tr>
<td>Primary # Zone 1 Disabled</td>
<td>FB1</td>
<td>FU1</td>
</tr>
<tr>
<td>Primary # Zone 2 Disabled</td>
<td>FB2</td>
<td>FU2</td>
</tr>
<tr>
<td>Primary # Zone 3 Disabled</td>
<td>FB3</td>
<td>FU3</td>
</tr>
<tr>
<td>Primary # Zone 4 Disabled</td>
<td>FB4</td>
<td>FU4</td>
</tr>
<tr>
<td>Primary # Zone 5 Disabled</td>
<td>FB5</td>
<td>FU5</td>
</tr>
<tr>
<td>Primary # Zone 6 Disabled</td>
<td>FB6</td>
<td>FU6</td>
</tr>
<tr>
<td>Primary # Zone 7 Disabled</td>
<td>FB7</td>
<td>FU7</td>
</tr>
<tr>
<td>Primary # Zone 8 Disabled</td>
<td>FB8</td>
<td>FU8</td>
</tr>
<tr>
<td>Primary # Zone 9 Disabled</td>
<td>FB9</td>
<td>FU9</td>
</tr>
<tr>
<td>Primary # Zone 10 Disabled</td>
<td>FB10</td>
<td>FU10</td>
</tr>
<tr>
<td>Primary # Drill</td>
<td>F1</td>
<td>FK</td>
</tr>
<tr>
<td>Primary # AC Fault</td>
<td>AT</td>
<td>AR</td>
</tr>
<tr>
<td>Primary # Zone 1 Fault</td>
<td>FT1</td>
<td>FJ1</td>
</tr>
<tr>
<td>Primary # Zone 2 Fault</td>
<td>FT2</td>
<td>FJ2</td>
</tr>
<tr>
<td>Primary # Zone 3 Fault</td>
<td>FT3</td>
<td>FJ3</td>
</tr>
<tr>
<td>Primary # Zone 4 Fault</td>
<td>FT4</td>
<td>FJ4</td>
</tr>
<tr>
<td>Primary # Zone 5 Fault</td>
<td>FT5</td>
<td>FJ5</td>
</tr>
<tr>
<td>Primary # Zone 6 Fault</td>
<td>FT6</td>
<td>FJ6</td>
</tr>
<tr>
<td>Primary # Zone 7 Fault</td>
<td>FT7</td>
<td>FJ7</td>
</tr>
<tr>
<td>Primary # Zone 8 Fault</td>
<td>FT8</td>
<td>FJ8</td>
</tr>
<tr>
<td>Primary # Zone 9 Fault</td>
<td>FT9</td>
<td>FJ9</td>
</tr>
<tr>
<td>Primary # Zone 10 Fault</td>
<td>FT10</td>
<td>FJ10</td>
</tr>
<tr>
<td>Primary # Zone 1 Dirty</td>
<td>FT1</td>
<td>FJ1</td>
</tr>
<tr>
<td>Primary # Zone 2 Dirty</td>
<td>FT2</td>
<td>FJ2</td>
</tr>
<tr>
<td>Primary # Zone 3 Dirty</td>
<td>FT3</td>
<td>FJ3</td>
</tr>
<tr>
<td>Primary # Zone 4 Dirty</td>
<td>FT4</td>
<td>FJ4</td>
</tr>
<tr>
<td>Primary # Zone 5 Dirty</td>
<td>FT5</td>
<td>FJ5</td>
</tr>
<tr>
<td>Primary # Zone 6 Dirty</td>
<td>FT6</td>
<td>FJ6</td>
</tr>
<tr>
<td>Primary # Zone 7 Dirty</td>
<td>FT7</td>
<td>FJ7</td>
</tr>
<tr>
<td>Primary # Zone 8 Dirty</td>
<td>FT8</td>
<td>FJ8</td>
</tr>
<tr>
<td>Primary # Zone 9 Dirty</td>
<td>FT9</td>
<td>FJ9</td>
</tr>
<tr>
<td>Primary # Zone 10 Dirty</td>
<td>FT10</td>
<td>FJ10</td>
</tr>
<tr>
<td>Primary # Earth Fault</td>
<td>ET38</td>
<td>ER38</td>
</tr>
<tr>
<td>Primary # Low Battery Fault</td>
<td>YT0</td>
<td>YR0</td>
</tr>
<tr>
<td>Primary # No Battery Fault</td>
<td>YT0</td>
<td>YR0</td>
</tr>
</tbody>
</table>

Table 3.6 SIA-DCS Primary # Event Codes
<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary # Telco Primary Line Fault</td>
<td>LT1</td>
<td>LR1</td>
</tr>
<tr>
<td>Primary # Telco Secondary Line Fault</td>
<td>LT2</td>
<td>LR2</td>
</tr>
<tr>
<td>Primary # NAC #1 Fault</td>
<td>ET32</td>
<td>ER32</td>
</tr>
<tr>
<td>Primary # NAC #2 Fault</td>
<td>ET33</td>
<td>ER33</td>
</tr>
<tr>
<td>Primary # NAC #3 Fault</td>
<td>ET34</td>
<td>ER34</td>
</tr>
<tr>
<td>Primary # NAC #4 Fault</td>
<td>ET35</td>
<td>ER35</td>
</tr>
<tr>
<td>Primary # NAC #1 Disable</td>
<td>ET101</td>
<td>ER101</td>
</tr>
<tr>
<td>Primary # NAC #2 Disable</td>
<td>ET102</td>
<td>ER102</td>
</tr>
<tr>
<td>Primary # NAC #3 Disable</td>
<td>ET103</td>
<td>ER103</td>
</tr>
<tr>
<td>Primary # NAC #4 Disable</td>
<td>ET104</td>
<td>ER104</td>
</tr>
<tr>
<td>Primary # Charger Fault</td>
<td>YP</td>
<td>YQ</td>
</tr>
<tr>
<td>Primary # Comm Trouble Primary #</td>
<td>YC1</td>
<td>YK1</td>
</tr>
<tr>
<td>Primary # Comm Trouble Secondary #</td>
<td>YC2</td>
<td>YK2</td>
</tr>
<tr>
<td>Primary # Printer Fault</td>
<td>VT</td>
<td>VR</td>
</tr>
<tr>
<td>Primary # ANN-Bus Fault</td>
<td>ET61</td>
<td>ER61</td>
</tr>
<tr>
<td>Primary # Option Card Fault</td>
<td>ET</td>
<td>ER</td>
</tr>
<tr>
<td>Primary # CS CALC Fault</td>
<td>YF</td>
<td>000</td>
</tr>
<tr>
<td>Future</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>Primary # System Off Normal</td>
<td>LB</td>
<td>LX</td>
</tr>
<tr>
<td>Primary # System Test Message</td>
<td>RP</td>
<td>000</td>
</tr>
<tr>
<td>Primary # System Abnormal Test Message</td>
<td>RP99</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Power Supply Sync Fault</td>
<td>OU</td>
<td>OV</td>
</tr>
<tr>
<td>Primary # Upload/Download Request</td>
<td>RB</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Upload Successful</td>
<td>RS</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Download Successful</td>
<td>RS</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Upload/Download Failed</td>
<td>RU</td>
<td>000</td>
</tr>
<tr>
<td>Primary # Voice EVAC Fault</td>
<td>ET</td>
<td>ER</td>
</tr>
<tr>
<td>Primary # Power Supply Sync Fault</td>
<td>OU</td>
<td>OV</td>
</tr>
</tbody>
</table>

Table 3.6 SIA-DCS Primary # Event Codes (Continued)
SIA-DCS Format - Secondary Central Station Phone Number

The information shown in Table 3.7 is automatically programmed for the Secondary Central Station phone number Event Codes when SIA-DCS Format is selected. To disable event reporting, select the desired Event Code to be disabled and press 0 or Clear and then Enter to disable it. (Enter must be pressed to save the selection. Pressing Escape will not save the selection).

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Event Code Settings</th>
<th>Restoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary # Zone 1 Alarm</td>
<td>FA1</td>
<td>FH1</td>
</tr>
<tr>
<td>Secondary # Zone 2 Alarm</td>
<td>FA2</td>
<td>FH2</td>
</tr>
<tr>
<td>Secondary # Zone 3 Alarm</td>
<td>FA3</td>
<td>FH3</td>
</tr>
<tr>
<td>Secondary # Zone 4 Alarm</td>
<td>FA4</td>
<td>FH4</td>
</tr>
<tr>
<td>Secondary # Zone 5 Alarm</td>
<td>FA5</td>
<td>FH5</td>
</tr>
<tr>
<td>Secondary # Zone 6 Alarm</td>
<td>FA6</td>
<td>FH6</td>
</tr>
<tr>
<td>Secondary # Zone 7 Alarm</td>
<td>FA7</td>
<td>FH7</td>
</tr>
<tr>
<td>Secondary # Zone 8 Alarm</td>
<td>FA8</td>
<td>FH8</td>
</tr>
<tr>
<td>Secondary # Zone 9 Alarm</td>
<td>FA9</td>
<td>FH9</td>
</tr>
<tr>
<td>Secondary # Zone 10 Alarm</td>
<td>FA10</td>
<td>FH10</td>
</tr>
<tr>
<td>Secondary # Zone 1 Disabled</td>
<td>FB1</td>
<td>FU1</td>
</tr>
<tr>
<td>Secondary # Zone 2 Disabled</td>
<td>FB2</td>
<td>FU2</td>
</tr>
<tr>
<td>Secondary # Zone 3 Disabled</td>
<td>FB3</td>
<td>FU3</td>
</tr>
<tr>
<td>Secondary # Zone 4 Disabled</td>
<td>FB4</td>
<td>FU4</td>
</tr>
<tr>
<td>Secondary # Zone 5 Disabled</td>
<td>FB5</td>
<td>FU5</td>
</tr>
<tr>
<td>Secondary # Zone 6 Disabled</td>
<td>FB6</td>
<td>FU6</td>
</tr>
<tr>
<td>Secondary # Zone 7 Disabled</td>
<td>FB7</td>
<td>FU7</td>
</tr>
<tr>
<td>Secondary # Zone 8 Disabled</td>
<td>FB8</td>
<td>FU8</td>
</tr>
<tr>
<td>Secondary # Zone 9 Disabled</td>
<td>FB9</td>
<td>FU9</td>
</tr>
<tr>
<td>Secondary # Zone 10 Disabled</td>
<td>FB10</td>
<td>FU10</td>
</tr>
<tr>
<td>Secondary # Drill</td>
<td>F1</td>
<td>FK</td>
</tr>
<tr>
<td>Secondary # AC Fault</td>
<td>AT</td>
<td>AR</td>
</tr>
<tr>
<td>Secondary # Zone 1 Fault</td>
<td>FT1</td>
<td>FJ1</td>
</tr>
<tr>
<td>Secondary # Zone 2 Fault</td>
<td>FT2</td>
<td>FJ2</td>
</tr>
<tr>
<td>Secondary # Zone 3 Fault</td>
<td>FT3</td>
<td>FJ3</td>
</tr>
<tr>
<td>Secondary # Zone 4 Fault</td>
<td>FT4</td>
<td>FJ4</td>
</tr>
<tr>
<td>Secondary # Zone 5 Fault</td>
<td>FT5</td>
<td>FJ5</td>
</tr>
<tr>
<td>Secondary # Zone 6 Fault</td>
<td>FT6</td>
<td>FJ6</td>
</tr>
<tr>
<td>Secondary # Zone 7 Fault</td>
<td>FT7</td>
<td>FJ7</td>
</tr>
<tr>
<td>Secondary # Zone 8 Fault</td>
<td>FT8</td>
<td>FJ8</td>
</tr>
<tr>
<td>Secondary # Zone 9 Fault</td>
<td>FT9</td>
<td>FJ9</td>
</tr>
<tr>
<td>Secondary # Zone 10 Fault</td>
<td>FT10</td>
<td>FJ10</td>
</tr>
<tr>
<td>Secondary # Zone 1 Dirty</td>
<td>FT1</td>
<td>FJ1</td>
</tr>
<tr>
<td>Secondary # Zone 2 Dirty</td>
<td>FT2</td>
<td>FJ2</td>
</tr>
<tr>
<td>Secondary # Zone 3 Dirty</td>
<td>FT3</td>
<td>FJ3</td>
</tr>
<tr>
<td>Secondary # Zone 4 Dirty</td>
<td>FT4</td>
<td>FJ4</td>
</tr>
<tr>
<td>Secondary # Zone 5 Dirty</td>
<td>FT5</td>
<td>FJ5</td>
</tr>
<tr>
<td>Secondary # Zone 6 Dirty</td>
<td>FT6</td>
<td>FJ6</td>
</tr>
<tr>
<td>Secondary # Zone 7 Dirty</td>
<td>FT7</td>
<td>FJ7</td>
</tr>
<tr>
<td>Secondary # Zone 8 Dirty</td>
<td>FT8</td>
<td>FJ8</td>
</tr>
<tr>
<td>Secondary # Zone 9 Dirty</td>
<td>FT9</td>
<td>FJ9</td>
</tr>
<tr>
<td>Secondary # Zone 10 Dirty</td>
<td>FT10</td>
<td>FJ10</td>
</tr>
<tr>
<td>Secondary # Earth Fault</td>
<td>ET38</td>
<td>ER38</td>
</tr>
<tr>
<td>Secondary # Low Battery Fault</td>
<td>YT0</td>
<td>YR0</td>
</tr>
<tr>
<td>Secondary # No Battery Fault</td>
<td>YT0</td>
<td>YR0</td>
</tr>
</tbody>
</table>

Table 3.7 SIA-DCS Secondary # Event Codes
Trouble Call Limit (Dialer Runaway Prevention)

The Call Limit option limits the number of DACT trouble calls to the Central Station, to a programmed amount between 0 and 99, for each unique trouble within a 24 hour period. All call limit counters reset (clear) at each midnight. Separate limit counters keep track of each unique type of trouble. Note that the number of phone line (communication) faults called to the Central Station are not limited by this feature. No subsequent restoral message is sent to the Central Station(s) for a particular trouble whose call limit has been reached. Local DACT annunciation will still track the particular trouble and restoral.

To set the Trouble Call Limit, press 3 while viewing Central Station Screen #2. The following screen will be displayed.

Table 3.7 SIA-DCS Secondary # Event Codes (Continued)

<table>
<thead>
<tr>
<th>Secondary #</th>
<th>Event Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telco Primary Line Fault</td>
<td>LT1</td>
<td>LR1</td>
</tr>
<tr>
<td>Telco Secondary Line Fault</td>
<td>LT2</td>
<td>LR2</td>
</tr>
<tr>
<td>NAC #1 Fault</td>
<td>ET32</td>
<td>ER32</td>
</tr>
<tr>
<td>NAC #2 Fault</td>
<td>ET33</td>
<td>ER33</td>
</tr>
<tr>
<td>NAC #3 Fault</td>
<td>ET34</td>
<td>ER34</td>
</tr>
<tr>
<td>NAC #4 Fault</td>
<td>ET35</td>
<td>ER35</td>
</tr>
<tr>
<td>NAC #1 Disable</td>
<td>ET101</td>
<td>ER101</td>
</tr>
<tr>
<td>NAC #2 Disable</td>
<td>ET102</td>
<td>ER102</td>
</tr>
<tr>
<td>NAC #3 Disable</td>
<td>ET103</td>
<td>ER103</td>
</tr>
<tr>
<td>NAC #4 Disable</td>
<td>ET104</td>
<td>ER104</td>
</tr>
<tr>
<td>Charger Fault</td>
<td>YP</td>
<td>YQ</td>
</tr>
<tr>
<td>Comm Trouble Primary #</td>
<td>YC1</td>
<td>YK1</td>
</tr>
<tr>
<td>Comm Trouble Secondary #</td>
<td>YC2</td>
<td>YK2</td>
</tr>
<tr>
<td>Printer Fault</td>
<td>VT</td>
<td>VR</td>
</tr>
<tr>
<td>ANN-Bus Fault</td>
<td>ET61</td>
<td>ER61</td>
</tr>
<tr>
<td>Option Card Fault</td>
<td>ET</td>
<td>ER</td>
</tr>
<tr>
<td>CS CALC Fault</td>
<td>YF</td>
<td>000</td>
</tr>
<tr>
<td>System Off Normal</td>
<td>LB</td>
<td>LX</td>
</tr>
<tr>
<td>System Test Message</td>
<td>RP</td>
<td>000</td>
</tr>
<tr>
<td>System Abnormal Test Message</td>
<td>RP99</td>
<td>000</td>
</tr>
<tr>
<td>Power Supply Sync Fault</td>
<td>OU</td>
<td>OV</td>
</tr>
<tr>
<td>Upload/Download Request</td>
<td>RB</td>
<td>000</td>
</tr>
<tr>
<td>Upload Successful</td>
<td>RS</td>
<td>000</td>
</tr>
<tr>
<td>Download Successful</td>
<td>RS</td>
<td>000</td>
</tr>
<tr>
<td>Upload/Download Failed</td>
<td>RU</td>
<td>000</td>
</tr>
<tr>
<td>Voice EVAC Fault</td>
<td>ET</td>
<td>ER</td>
</tr>
<tr>
<td>Power Supply Sync Fault</td>
<td>OU</td>
<td>OV</td>
</tr>
</tbody>
</table>

NOTE: Entering a value of 00 will disable the Trouble Call Limit allowing the DACT to call the Central Station an unlimited amount of times. This is the factory default setting.

Service Terminal

The FACP can be programmed remotely from a PC using a modem and telephone line. Information can also be retrieved from the FACP using the same method. The Upload/Download option allows an operator to set the necessary parameters to allow the uploading and downloading of data between the FACP and PC. The Service Terminal selection provides the means for entering these parameters.
Pressing 1 while viewing Onboard DACT Screen #2 will cause the following screens to appear:

Ring Count

The ring count designates the number of rings allowed on the phone line prior to answering an incoming call from a service terminal. The factory default is 0 which means the control panel will not answer an incoming call. This entry may be programmed for 1 to 25 rings.

To change the Ring Count, press 1 while viewing the Service Terminal Screen #2. The following screen will be displayed:

![Ring Count Screen](image)

A flashing cursor will appear in the lower left corner of the display. Enter the two-digit ring count which can be a value between 00 and 25. After the second digit is entered, the display will return to the Service Terminal screen.

Supervised Phone Line

The Supervised Phone Line feature allows the user to disable the supervision of Phone Line 2 by the DACT when using an alternate means of secondary transmission path. The factory default setting is Phone Line 2 supervised.

Pressing 2 for Superv Phone Line while viewing Onboard DACT Screen 2 will cause the following screen to be displayed:

![Supervise Phone Line Screen](image)

Each press of the 1 key while viewing this screen will toggle the option between Supervise Phone Line 2 Yes and No.

3.5.6 History

The History option allows an authorized user to view or erase events which have occurred in the control panel. Pressing 3 while viewing Programming Screen #2 will display the History options as shown in the following display:

![History Screen](image)

Pressing 1 while viewing the History Screen will allow the user to select the events to be viewed as illustrated in the following:

![View Events Screen](image)

While displaying the View Events screen, press 1 to view all events, 2 to view only alarms, or 3 to view other events. Use the up and down arrow keys to scroll through all of the displayed events.
Erase History
The Erase History option allows a user to erase all events from the history file. This will provide a clean slate in order to use the history file to track future events. Pressing 2 while viewing the History Screen will display the following screen:

![Erase History Screen]

Pressing 1 while viewing the Erase History Screen will erase all events from the History file. After the History file has been erased, the display will return to the History Screen.

3.5.7 Walktest
Walktest allows an individual to test the fire alarm system without the necessity to reset the control panel after each device activation. Refer to the sections titled “Walktest” on page 95 and “Walktest” on page 101 for additional information regarding the Walktest feature. Pressing 1 while viewing the Programming Screen #3 will cause the following Walktest options to be displayed:

![Walktest Screen]

To perform a silent walktest which will not sound the NACs, press 1 while viewing the Walktest Screen. To perform an audible walktest, which will sound the NACs, press 2 while viewing the Walktest Screen. When either option is chosen, the panel will enter Walktest Mode and the following screen will be displayed:

![Walktest Active Screen]

The user can now perform a one-person walktest by activating devices throughout the system. As each device is activated, the screen will display the information about the activated device as shown below. Note that the colon (:) in the time is replaced with an asterisk (*) to distinguish the walktest screen from an actual alarm screen.

![Walktest Results]

After completion of the Walktest, press the Esc (Escape) key to exit Walktest Mode and return to the Walktest Screen. The results of the Walktest can now be viewed by pressing 3 while viewing the Walktest Screen. The following screen will be displayed:

Use the up and down arrow keys to view all of the walktest results which will be displayed as illustrated in the preceding screen. Note that the Walktest log is stored in RAM. If all power (AC and DC) is removed from the FACP, the Walktest log information will be lost. This information is also overwritten when subsequent walktests are performed.

3.5.8 Clear Program
Pressing 2 while viewing Programming Screen #3, will select the Clear Program option. The control panel will provide a warning to the user by prompting with the following display:

![Clear Program Warning]

Pressing 1 will cause the control panel to carry out the selected clear option. Pressing 2 will prevent programming from being cleared.
Printer/PC

A Printer or a PC can be connected to the control panel. Pressing 3 while viewing the Option Module Screen will cause the following screen to appear:

Pressing 1 while viewing the Printer-PC Screen will program the control panel for an unsupervised (NO SU) printer. The display will change to the Printer Baud Rate Screen as shown below. Pressing 2 while viewing the Printer-PC Screen will program the control panel for a supervised (SU) printer. Printer supervision, when enabled, will typically detect the removal of the printer cable and will detect when the printer power has been turned off. Depending upon the brand of printer, other errors such as paper empty or printer off-line may be detected.

The following screen will appear, which allows the programmer to select the baud rate for the printer communication:

Pressing the number key corresponding to the desired baud rate (2 for 4800 Baud for example) will program the control panel for the selected baud rate and return the display to the Option Module Screen which will indicate Printer/PC PR4800 for a supervised printer installed at 4800 baud rate.

Pressing 3 while viewing the Printer-PC Screen will program the control panel for a PC connection. The display will return to the Option Module Screen which will indicate Printer/PC PC for personal computer installed.

3.5.9 Password Change

The factory set passwords, which have been programmed into the control panel, can be changed by selecting the Password Change option. Pressing 3 while viewing Programming Screen #3 will cause the following screen to be displayed:

Press 1 to change the Master Programming Level password, 2 to change the Maintenance Level password, or 3 to change the Remote Download password. Note that the passwords will not be displayed on annunciators.

The following screen will appear when one of the change options is selected:

A flashing cursor will appear in the center of the display. Enter a new five digit password (such as 10101 for the Master Level). After the fifth digit is entered, the following screen will be displayed:

The new five digit password must be re-entered to accept the change. The display will then return to the initial Password Change Screen.
3.6 Maintenance Programming Level

To access Maintenance Programming mode, press the Enter key. The LCD will display the following:

![Screen 1](image)

To enter the Maintenance Programming mode, press 2. The display will read as follows:

![Screen 2](image)

When the Maintenance level password (default 11111) is entered, the following screen will appear:

![Screen 3](image)

Note that in the preceding screens, an arrow appears to inform the programmer that additional options can be viewed by pressing the keypad down arrow key, as shown in the following screen:

![Screen 4](image)

3.6.1 Input Zones - Enable/Disable

The Zone Setup option allows the user to enable or disable desired zones. Pressing 1 for Zone Setup, while viewing Maintenance Screen #1 will cause the following screens to be displayed:

![Screen 5](image)

Pressing the down arrow key will display additional Zones (Zones 4 - 5 for MS-5UD and Zones 4 - 10 for MS-10UD). Select the number corresponding to the desired zone. A screen will appear which will allow enabling or disabling of the selected zone, as illustrated in the following example:

![Screen 6](image)

Pressing 1 repeatedly will cause the display to toggle between Enabled Yes and Enabled No.

3.6.2 History

Pressing 2 while viewing Maintenance Screen #1 will cause the following screen to be displayed:

![Screen 7](image)

The History feature allows the operator to view control panel events which have been stored in a history file in memory and erase the contents of the history file.

Pressing 1 while viewing the History screen will cause the following screen to be displayed:

![Screen 8](image)
Maintenance Programming Level

To view all the events which have occurred in the control panel since the history file was last erased, press 1 while viewing the Events screen. To view only alarms/active events which have occurred, press 2 while viewing the Events screen. To view events other than alarms, press 3. The most recent event will be displayed on the screen. To view all of the selected events, press the up or down arrow keys to scroll through the list of events. If no events have occurred, the display will read NO EVENTS IN HISTORY.

Pressing 2 while viewing the History Screen will cause the following screen to be displayed:

```
ERASE HISTORY
PROCEED?
1=YES            2=NO
```

Erase History Screen

Pressing 1 while viewing the Erase History Screen will erase all events from the History file. The display will then return to the History Screen. Pressing 2 will cause the display to return to the History Screen without erasing the History file.

3.6.3 Walktest

To perform a walktest, press 3 while viewing Maintenance Screen #1. The following screen will be displayed:

```
WALKTEST
1=SILENT
2=AUDIBLE
3=VIEW RESULT
```

Walktest Screen

The operator can press 1 to perform a silent walktest or 2 to perform an audible walktest. The display will read UNIT IN WALKTEST. To end the Walktest, press the Esc (Escape) key.

Pressing 3 after the walktest has been completed, will allow the operator to view the results of the walktest.

3.6.4 Time-Date

To program the time and date into the control panel, press 1 while viewing Maintenance Screen #2. The following display will appear:

```
TIME AND DATE
1=TIME        01:00 AM
2=DATE     06-09-2018
3=CLOCK FORMAT 12HRS
```

Time and Date Screen

To change the time, press 1 to display the following screen:

```
ENTER TIME AS 12HRS
1=AM            2=PM
01:00 AM
```

Time Screen

A flashing cursor will appear on the left side of the display. Enter the four digit number corresponding to the time (0000 - 1259). When the fourth digit is entered, the cursor will move one position to the right. Press 1 for AM or 2 for PM to complete entering the time. The display will return to the Time and Date Screen displaying the new time.

To change the date, press 2 while viewing the Time and Date Screen. The following screen will be displayed:

```
Enter Date
Month Day Year
06-15-2018
```

Date Screen

A flashing cursor will appear on the left side of the display. Enter the two digit month, two digit day and four digit year. The cursor will move one position to the right after each entry. When the fourth digit of the year has been entered, the display will return to the Time and Date Screen which will show the new date.

To change between 12 hour and 24 hour format, press 3 while viewing the Time and Date screen. Each press of the 3 key will toggle the display between 12 HR and 24 HR format.
Section 4: Operating Instructions

4.1 Panel Control Buttons

4.1.1 Acknowledge/Step
The first press of the Acknowledge/Step key silences the piezo sounder, changes flashing LEDs to steady and also changes the status field on the LCD display from capital letters to small letters (TROUBL to Troubl). When the piezo is silenced, an acknowledge message is sent to the printer and the history file. Acknowledge also sends a silence piezo command to the optional annunciators connected to the FACP. The Acknowledge key will have no effect on the Notification Appliance Circuits.

When more than one event exists, the first press of the Acknowledge/Step key functions as described in the preceding paragraph. Subsequent pressing of the key steps through each active event.

4.1.2 Alarm Silenced
The Alarm Silenced key performs the same functions as Acknowledge/Step except it will not step through each event when multiple events are present at the panel. If an alarm exists, the Alarm Silenced key turns off all silenceable NACs (Notification Appliance Circuits) and causes the Alarm Silenced LED to turn on. It also sends an ‘alarm silenced’ message to the printer, history file and optional annunciators. A subsequent new alarm will resound the system NACs. The Alarm Silenced LED is turned off by pressing the Reset key, the Drill key or subsequent activation of the NACs.

Note that if Silence Inhibit has been enabled, NACs cannot be silenced for one minute following initiation of an alarm.

4.1.3 Drill/Hold 2 Sec
When the Drill key is held for a minimum of two seconds (time required to prevent accidental activations), the FACP turns on all NAC outputs and turns off the Alarm Silenced LED if it was previously on. The EVAC IN SYSTEM message is shown on the LCD display. The same message is sent to the printer and history file. The Alarm Silence key can be used to turn off all silenceable NAC outputs following activation by the Drill key.

4.1.4 Reset
Pressing and releasing the Reset key turns off all NACs, temporarily turns off resettable power to 4-wire detectors, causes a RESET IN SYSTEM message to be displayed on the LCD and sends the same message to the printer and history file. It also performs a lamp test by turning on all LEDs, piezo sounder and LCD display segments after the Reset key is released. Any alarm or trouble that exists after a reset will resound the system.

Note that if Silence Inhibit has been enabled, the FACP cannot be reset for one minute following initiation of an alarm.

4.2 LED Indicators
The five LED indicators, which are located on the front panel, operate as follows:

AC Power
This is a green LED which illuminates if AC power is applied to the FACP. A loss of AC power will turn off this LED

Fire Alarm
This red LED flashes when one or more alarms occur. It illuminates steady when the Acknowledge/Step or Alarm Silence key is pressed. The Fire Alarm LED turns off when the Reset key is pressed. The LED will remain off if all alarms have been cleared.

Supervisory
This is a yellow LED that flashes when one or more supervisory conditions occur, such as a sprinkler valve tamper condition. It illuminates steady when the Acknowledge/Step or Alarm Silence key is pressed. It turns off when the Reset key is pressed and remains off if all supervisory alarms have been cleared.

Trouble
This is a yellow LED that flashes when one or more trouble conditions occur. It stays on steady when the Acknowledge/Step or Alarm Silence key is pressed. The LED turns off when all trouble conditions are cleared. This LED will also illuminate if the microprocessor watchdog circuit is activated.

Alarm Silenced
This is a yellow LED that turns on after the Alarm Silence key is pressed while an alarm condition exists. It turns off when the Drill or Reset key is pressed.

4.3 Normal Operation
With no alarms or troubles in the system, the display message is System All Normal along with the current time and date as shown below.

To set the time and date, refer to the appropriate section in this manual.
The FACP performs the following functions at regular intervals in Normal mode:

- Monitors AC input voltage and battery voltage
- Monitors and reports status option cards and control panel
- Refreshes LCD display and updates time
- Scans control panel keypad for key presses
- Tests memory
- Updates and reads all communications busses (EIA-485, etc.)
- Smoke detectors will be polled for maintenance and freeze conditions on initial entry into Normal mode. Thereafter, each device will be polled every hour for freeze and every four hours for maintenance conditions.

NOTE: To ensure that the system is functioning properly, the FACP will perform a freeze check five minutes after the panel is reset, followed by a maintenance check. If there is no freeze or maintenance condition, the panel will continue to monitor for freeze conditions every hour and maintenance conditions every four hours.

4.4 Trouble Operation

With no alarms in the system, the detection of a trouble will cause the following:

- The piezo to pulse 1 second On and 1 second Off
- The system Trouble LED to flash one second On and one second Off
- The trouble relay to activate
- TROUBL with device type, adjective/noun, address and trouble description will appear on the LCD display
- The same message, along with the time and date, is sent to the optional printer and the history buffer.
- Communicate the trouble conditions to the Central Station
- Terminate upload or download communications

Note that specific troubles will initiate additional actions; for example, loss of AC power will turn off the AC Power LED, etc.

Input Zone

For Input Zones, the following is a typical message that could appear on the LCD display for a device trouble:

```
TROUBL PULL STATION
<ADJ> <NOUN>
ZONE 10 OPEN FAULT
10:00A 060918
```

The information displayed in the above example provides the following information:

- **First line in display:**
 - The type of event; in this example OPEN indicating a circuit trouble
 - Device type identifier; in this example, PULL STATION indicates a manual device. Other device type identifiers which can be displayed include SMOKE for Smoke Detector, HEAT for Heat Detector, etc.
- **Second line in display:**
 - `<ADJ>` refers to the user programmed adjective descriptor from library list resident in the control panel or custom entry via PC.
 - `<NOUN>` refers to the user programmed noun descriptor from library list resident in the control panel or custom entry via PC.
- **Third line in display indicates Zone and the fault condition. Other possible troubles include:**
 - OPEN - indicating an open circuit
 - DIRTY - maintenance alert indicating that an i3 detector is near but below the allowed alarm limit and is in need of maintenance before the performance is compromised
- **Fourth line in display:**
 - Time; the current time in this example is 10:00A which represents 10:00 AM
 - Date; the current month, day and year in this example is 06 for June, 09 for the 9th day of the month and 18 for the year 2018

Pressing the Acknowledge/Step or Alarm Silence key will cause the pulsing piezo to silence and the system Trouble LED to change from flashing to on steady. This block acknowledgment occurs regardless of the number of troubles, alarms and supervisory events active in the system. When the Acknowledge/Step key is pressed and at least one new alarm or trouble exists in the system, the ‘acknowledge’ message is sent to the printer and history file. If the trouble clears, either before or after the Acknowledge/Step key is pressed, the ‘clear trouble’ message is sent to the printer and history file.

If all troubles clear and there are no supervisory or fire conditions active in the system, the system returns to normal mode operation and the System All Normal message is shown on the LCD display and sent to the history and printer files. The auto-restore feature will restore cleared troubles even if the troubles were never acknowledged. Note that pressing the Alarm Silence key when only troubles exist in the system will have the same effect as pressing the Acknowledge/Step key except the Alarm Silenced LED will light.

4.5 Alarm Operation

Alarm operation is similar to trouble operation with the following differences:

- The piezo sounder produces a steady output as opposed to a pulsed output
- The Fire Alarm LED flashes 1 second On and 1 second Off
- The LCD displays Alarm along with the device name, type, adjective/noun, associated zones and time/date
• Communicate the alarm to the Central Station
• Alarms latch and are not allowed to clear automatically
• Timers for Silence Inhibit, Autosilence and Trouble Reminder are started
• Alarms activate the alarm relay
• Silenced alarms are resounded
• The trouble relay is not activated
• Store event in history buffer
• Terminate upload or download communications

A typical alarm display would be as illustrated below:

![Alarm Display](image)

Note that the device type, which in this example is PULL STATION, can be any other programmable alarm type.

The information displayed in the above example provides the following information:
• First line in display:
 – The type of event; in this example ALARM indicating an alarm condition
 – Device type identifier; in this example, PULL STATION indicates a manual pull box. Other device type identifiers which can be displayed include SMOKE for Smoke Detector, HEAT for Heat Detector, etc.
• Second line in display:
 – <ADJ>: refers to the user programmed adjective descriptor from library list resident in the control panel or custom entry via PC.
 – <NOUN>: refers to the user programmed noun descriptor from library list resident in the control panel or custom entry via PC.
• Third line in display: Zone 10 indicates the zone programmed to this device which, in this example, is Input Zone 10.
• Fourth line in display:
 – Time; the current time in this example is 10:00A which represents 10:00 AM
 – Date; the current month, day and year in this example is 06 for June, 09 for the 9th day of the month and 18 for the year 2018

4.6 Supervisory Operation

Supervisory operation is similar to alarm operation but with the following differences:
• The piezo sounder pulses ½ second On and ½ second Off
• The Supervisory LED flashes ½ second On and ½ second Off
• The LCD displays the status label Active Supervisory along with the device name, type, adjective/noun, associated zones and time/date
• Communicate the supervisory condition to the Central Station
• The supervisory relay is activated
• The alarm relay is not activated
• Silenced alarms are not resounded
• Timers are not started
• Store event in history buffer
• Terminate upload or download communications

A typical Supervisory event would be displayed as illustrated in the following:

![Supervisory Display](image)

In the preceding example:
• FROZEN SUPERVISORY - indicates zone detector is below approximately 45°F

Note that, like alarms, supervisory signals latch, except when programmed for supervisory autoresettable. Supervisory activations do not cause silenced alarms to resound, as do other alarm conditions. Open circuits in supervisory wiring are processed by the control panel the same way as other trouble conditions. Refer to “Alarm Operation” on page 97, for a description of the information displayed on the control panel LCD.

4.7 Process Monitor Operation

Process Monitor operation will initiate the following events:
• The piezo sounder pulses ¼ second On and ¼ second Off
• The LCD displays a process monitor message along with the device name, type, adjective/noun, associated zones and time/date
• Communicate the process monitor condition to the Central Station (if the default event code has been changed from 000 to a reportable event code)
• Relays programmed for process monitoring will be activated
Hazard/Tornado Condition Operation

Hazard/Tornado operation is intended for Manual activation.

Hazard/Tornado Condition operation will initiate the following events:

- The piezo sounder pulses ¼ second On, ¼ second Off
- The LCD displays a hazard message along with the device name, type, adjective/noun, associated zones and time/date
- Communicate the hazard condition to the Central Station (if the default event code has been changed from 000 to a reportable event code)
- Relays programmed for hazard will be activated
- The alarm relay is not activated
- Silenced alarms are not resounded
- Timers are not started
- Store event in history buffer
- Activate appropriate LED on the ANN-LED annunciator (required for this application)

Note that, like supervisors, process monitor signals latch, except when programmed for process monitor autoresettable.

Medical Alert Condition Operation

Medical alert operation is:

- not intended for nurse call stations (applications) per UL1069.
- not intended for signaling professional medical staff.
- to be used for summoning security guards or other trained personnel within the facility
- intended for Manual activation.

Medical Alert Condition operation will initiate the following events:

- The piezo sounder pulses ¼ second On, ¼ second Off
- The LCD displays a medical alert message along with the device name, type, adjective/noun, associated zones and time/date
- Communicate the medical alert condition to the Central Station (if the default event code has been changed from 000 to a reportable event code)
- Relays programmed for medical alert will be activated
- The alarm relay is not activated
- Silenced alarms are not resounded
- Timers are not started
- Store event in history buffer
- Activate appropriate LED on the ANN-LED annunciator (required for this application)

Medical alert conditions latch.

Disable/Enable Operation

Input zones which are disabled do not cause an alarm or any zone activation. Disabled NACs are held in the off state. All disabled zones/NACs are treated as if they were in trouble, with the exception being the status label that will be displayed is DISABL.

Waterflow Circuits Operation

If an alarm exists from a zone that is a waterflow non-silenceable type, the Alarm Silence key will not function.

Detector Functions

Maintenance Alert

i3 smoke detectors will be polled for maintenance and freeze conditions on initial entry into Normal mode. Thereafter, each device will be polled every hour for freeze and every four hours for maintenance conditions. All alarm and system trouble conditions are annunciated on the control panel's LCD.

NOTE: To ensure that the system is functioning properly, the FACP will perform a freeze check five minutes after the panel is reset, followed by a maintenance check. If there is no freeze or maintenance condition, the panel will continue to monitor for freeze conditions every hour and maintenance conditions every four hours.
System Alarm Verification
The control panel may be programmed to perform alarm verification to help eliminate the nuisance of false alarms. Alarm verification applies to smoke detectors only.

4.13 Time Functions: Real-Time Clock
The FACP includes a crystal-based clock that provides time of day, date and day of week. Time is displayed as 12 or 24 hour time with month/day/year and is stored in RAM. Daylight savings time change-over is programmable and automatic. If both AC and battery are lost, the time must be reprogrammed.

4.14 Coded Operation
The NAC circuits resident on the control panel main circuit board can be programmed for coded operation. The available pulse rates which can be programmed for coded operation are as follows:

- Continuous: Steady output with no pulsing
- March Time: Pulses at 120 ppm (pulses per minute)
- Temporal Code: Pulses at ½ second On, ½ second Off, ½ second On, ½ second Off
- California Code: 10 seconds On, 5 seconds Off
- Two-Stage: Pulses at 20 ppm (pulses per minute) for 3 or 5 minutes and then changes to Temporal

4.15 Presignal
Presignal option programs an initiating device to delay the activation of NACs while allowing visual verification by a person. Once a detector triggers an alarm, the onboard piezo sounds immediately, but the NACs are not activated for a user programmed time duration of up to three minutes. Note that the alarm relay and communicator will respond to the initial alarm immediately.

After the programmed delay, the NACs will activate if the source of the alarm is not cleared. Note that if a second alarm occurs during the programmed time delay, the alarm will be processed immediately, causing activation of the NACs. The events which occur upon Presignal activation are as follows:

- onboard piezo sounds immediately
- control panel LCD display will indicate a presignal event and the active zone
- annunciators (if enabled) will sound the local piezo, and pulse the alarm LED and zone LED
- outputs (NACs) of associated zones will be inhibited from activating for a user programmed time delay of up to three minutes
- a second alarm occurring anytime during the time delay will cause immediate activation of all associated outputs

Presignal operation requires the approval of the local Authority Having Jurisdiction.

4.16 Positive Alarm Sequence
PAS (Positive Alarm Sequence) option will program a smoke detector to delay panel activation (including alarm relay and communicator) for a period of 15 seconds.

When a detector triggers an alarm, the onboard piezo sounds immediately, but the NACs are prevented from activating for 15 seconds. This inhibit time is factory set and cannot be changed. Pressing the Alarm Silence or Acknowledge/Step key during the 15 second inhibit time will silence the piezo sounder and start a timer which prevents activation of NACs for an additional time duration which can be user programmed for up to three minutes. After the programmed delay, the NACs will activate if the source of the alarm is not cleared. Note that if a second alarm occurs during either time delay, the alarm will be processed immediately, causing activation of the NACs. The events which occur upon PAS activation are as follows:

- onboard piezo sounds immediately
- control panel LCD display will indicate a PAS event and the active zone
- annunciators (if enabled) will sound the local piezo, and pulse the alarm LED and zone LED
- outputs (NACs) of associated zones will be inhibited from activating for a factory set duration of 15 seconds
- pressing the Alarm Silence or Acknowledge/Step key will start a timer which inhibits output activation for additional time delay of up to three minutes which is user programmable
- a second alarm occurring anytime during either time delay will cause immediate activation of all associated outputs

PAS operation requires the approval of the local Authority Having Jurisdiction.

4.17 Special System Timers
4.17.1 Silence Inhibit Timer
This option, if selected, prevents the Alarm Silenced and Reset keys from functioning for 60 seconds following an alarm. A new alarm during the initial 60 second period will not cause the timer to restart with a new 60 seconds. Silence Inhibit operation requires the approval of the local Authority Having Jurisdiction.
4.17.2 Autosilence Timer

If Autosilence is selected, the notification appliances, programmed as silenceable, will automatically be silenced after a programmable duration of from 5 to 30 minutes. Pressing the Drill key will restart the timer. Autosilence operation requires the approval of the local Authority Having Jurisdiction.

4.17.3 Trouble Reminder

If selected, this feature causes a reminding ‘beep’ every 15 seconds during an alarm (after the Alarm Silence key is pressed) and every two minutes during a trouble condition (after the Acknowledge/Step or Alarm Silence key is pressed). The ‘beeps’ from the onboard piezo sounder will occur until the alarm or fault is cleared.

Note that if Trouble Reminder feature is not selected and the trouble is not cleared within 24 hours, the piezo will resound, indicating that the trouble condition still exists.

4.17.4 Waterflow Retard Timer

If selected, this option will delay the activation of a waterflow type alarm for a programmable time duration from 1 to 90 seconds. This delay is in addition to any time delay inherent in the waterflow device. This feature requires the approval of the local Authority Having Jurisdiction.

4.17.5 Alarm Verification (None or One Minute)

If alarm verification is selected, a smoke detector activation will cause the FACP to reset the detector by removing power for 6 seconds. Power is reapplied and a 17 second retard period begins which allows all detectors to stabilize. If no other detectors alarm, there will be no alarm indication at the FACP during the 23 second Reset/Retard period. A Confirmation period of 60 seconds follows, during which a subsequent alarm from the same detector will cause the panel to immediately activate the appropriate outputs and indicate the alarm condition at the FACP. If a different detector zone alarms any time during the first detector's Retard & Confirmation period, the panel will immediately activate all appropriate outputs and indicate the alarm condition at the FACP. If no additional detector alarms occur within 83 seconds of the first alarm (23 second Reset/Retard plus 60 second Confirmation), the timer resets and the panel is ready to verify any new detector alarms which may occur.

![Diagram of Alarm Verification Process]

NOTE: Alarm Verification is available only for smoke detectors.

4.18 Walktest

Walktest is a feature which allows one person to test the fire alarm system. An audible walktest will momentarily sound the Notification Appliance Circuits in the building and store the walktest information in a file at the panel. A silent walktest will not sound the NACs but will store the walktest information in a file which can be viewed at the panel. Disabled NAC devices will not activate during walktest. In addition, i3 smoke detectors will enter their own test mode causing their LEDs to flash twice every five seconds (refer to i3 specification document).

Alarm/Shorted Condition

When in audible Walktest, the panel responds to each new alarm and activates the NACs for four seconds. It also stores each alarm in the walktest history file which can be sent to an optional printer. The stored display will be the same as if the device actually activated except the colon (:) in the time stamp is replaced with an asterisk (*).

Open Condition

IDCs and all main circuit board NACs are monitored for fault conditions during Walktest mode. When an open condition occurs on an IDC, the FACP will activate all enabled NACs during an audible Walktest and remain activated until the open condition is cleared.
While in Walktest, the trouble relay is activated and the system Trouble LED flashes (as in all of the Program and status change operations). The alarm relay is not activated.

NOTE: In Walktest, a NAC open or short fault will not cause the NACs to activate.

4.19 Read Status

Read Status functions do not require a password. The control panel will continue to provide fire protection while in Read Status mode. This mode can be entered while the control panel is in alarm or trouble. If a new alarm or trouble occurs during these functions, the Read Status is exited to prevent confusion.

Read Status Entry

When the operator presses the control panel Enter key, the LCD will display the following:

![1=READ STATUS MODE 2=PROGRAMMING MODE 3=FUTURE USE 4=REMOTE DOWNLOAD](image)

Pressing 1, while this screen is being displayed, will cause the control panel to enter the Read Status mode which allows the user to view and print the programmed features and status of the control panel.

The following screens will be displayed:

1. **Read Status Screen #1**
2. **Read Status Screen #2**
3. **Read Status Screen #3**
4. **Read Status Screen #4**

4.19.1 Input Zones

Pressing 1 while viewing Read Status Screen #1 will cause the following screens to be displayed:

![Read Status Screen #1](image)

Pressing the down arrow key will allow the selection of Zones 4-5 for the MS-5UD and Zones 4-10 for the MS-10UD.

The operator selects the zone which is to be viewed by pressing the number corresponding to the desired zone in each screen. For example, if 1 is pressed, the display will change to a screen similar to the following:

![Pull Station](image)

Pressing the down arrow key, while viewing the screen shown above, will allow the operator to view additional programming information about the selected device, such as:

- Enable/Disable Status
- Device Type
- Alarm Verification On/Off (for detectors)
- PAS (Positive Alarm Sequence) Yes/No (for detectors only)
- Pre-Signal Yes/No (for detectors only)
- Input Zone Freeze Supervision
- Adjective/Noun descriptor
- ACC Message
- Description

4.19.2 NAC

Pressing 2 while viewing Read Status Screen #1 will display the following screen:

![NAC Status](image)
The operator can press 1 to view the programmed options for NAC 1, 2 to view the programmed options for NAC 2, 3 to view the programmed options for NAC 3, or 4 to view the programmed options for NAC 4.

The resulting screens will display the following information:
- Enable/Disable Status
- Coding Selection (Temporal, Steady, etc.)
- Silenceable/Nonsilenceable
- Auto Silence Enable/Disable and time delay (in minutes)
- Silence Inhibit Enabled/Disabled

4.19.3 Relays
Pressing 3 while viewing Read Status Screen #1 will display the following screen:

```
READ STATUS
1=INPUT ZONES
2=NACS
3=RELAYS
```

Read Status Screen #1

This screen allows the operator to view the programmed option for each relay.

4.19.4 System Settings
Pressing 1 while viewing Read Status Screen #2 will display the following screens:

```
SYSTEM SETTINGS
TROUBLE REMIND   NO
CANADIAN OPTION  OFF
CHRGR DISABLE     NO
```

The operator can view the system settings options that have been programmed into the FACP.

4.19.5 Timers
Pressing 2 while Read Status Screen #2 will display the following screen:

```
TIMERS
PAS DELAY       120
PRE SIGNAL      120
WATERFLOW DELA   0
```

These screens allow the operator to view the various timer settings.

4.19.6 Daylight Savings
Pressing 3 while Read Status Screen #2 will cause the following screens to be displayed:

```
DAYLIGHT SAVINGS
ENABLED         NO
START MONTH     MAR
START WEEK      WK 3
```

```
DAYLIGHT SAVINGS
END MONTH      NOV
END WEEK       WK 3
```

These screens allow the operator to view settings that have been programmed for Daylight Savings Time.

4.19.7 History
Pressing 1 while viewing Read Status Screen #3 will display the following screens:

```
HISTORY
1=VIEW ALL
2=VIEW ALARMS
3=VIEW OTHER EVENTS
```

The operator can view all events which have been stored in the history file, only alarms or other events, such as troubles or supervisories, by pressing the corresponding number key.

4.19.8 Print
To print program data or control panel status, press 2 while viewing Read Status Screen #3. The following screen will be displayed:

```
PRINT
1=HISTORY
2=WALKTEST LOG
3=EXIT PRINTING
```
Pressing 1 while viewing the Print Screen allows the user to print the History file which will detail all of the system activities since the file was last cleared from memory.

Pressing 2 while viewing the Print Screen allows the user to print the Walktest log which will detail all of the system activations during walktest since the log was last cleared. Refer to “Walktest” on page 92 for additional information on the display.

Pressing 3 while viewing the Print Screen will exit the Print operation.

4.19.9 ANN-BUS

Pressing 3 while viewing Read Status Screen #3 will display the settings for the ANN-BUS options as shown in the following screens:

ANN-BUS Screen #1 indicates whether the ANN-BUS is enabled (Yes/No).

Pressing 1 while viewing ANN-BUS Screen #1 will display BUS Module addresses 1-8 and the devices, if any, located at those addresses.

Pressing 2 while viewing ANN-BUS Screen #1 will display the printer settings for the printer connected to the FACP. This information includes:

• Serial or Parallel printer
• Printer Supervision (Yes or No)
• Off-line Timer setting
• Baud Rate
• Data Bits
• Parity
• Stop Bits

Pressing 1 while viewing ANN-BUS Screen #2 will display the programmed options for the ANN-80 devices connected to the ANN-BUS. These include Piezo enable/disable, Lock enable/disable and which buttons/keys on the annunciator are enabled/disabled.

Pressing 2 while viewing ANN-BUS Screen #2 will display the zone programming for each ANN-RLY relay.

Pressing 3 while viewing ANN-BUS Screen #2 will display the zone, if any, that has been assigned as the All-Call Zone.

4.19.10 Central Station

Pressing 1 while viewing Read Status Screen #4 will display the following screens:

Central Station Screen #1 indicates whether the Central Station Reporting is enabled or disabled and if the Reports will be sent to one or both the Primary and Secondary Central Station phone numbers. Central Station Screen #2 provides information on the Primary and Secondary Central Station programming which includes:

• Test Time Interval
• Account Code
• 24 Hour Test Time
• Phone Number
• Communication Format
• Event Codes

This screen also displays the Call Limit for each unique DACT trouble call within a 24 hour period.

4.19.11 Phone Line

Pressing 1 while viewing Read Status Screen #4 will display the following screen:

The second and third lines of this screen indicate that both the Primary and Secondary phone lines have been configured for touchtone dialing operation.
Pressing 1 for Superv Phone Line will cause the following screen to be displayed:

![Superv Phone Line Screen]

This screen indicates whether or not Phone Line 2 is being supervised by the DACT. The factory default setting is Phone Line 2 supervised (Yes).

4.19.12 Service Terminal

Pressing 3 while viewing Read Status Screen #4 will display the following screens:

![Service Terminal Screen]

The Ring Count is displayed as the first item in the Service Terminal Screen.
Section 5: Central Station Communications

The control panel transmits zone and system status reports to Central Stations via the public switched telephone network. Two supervised telephone line connections are made to interface the control panel to the telephone lines. Two optional 7 foot telephone cords are available for this purpose and can be purchased separately.

The control panel supervises both telephone lines for proper voltage. A delay of two minutes will occur before a fault in either phone line connection is reported as a trouble. When a fault is detected, an audible trouble signal will sound, the LCD display will indicate the phone line trouble and the trouble condition will be reported to the Central Station over the remaining operational phone line.

The control panel comes with line seizure capability provided for both the primary and secondary telephone line interfaces. Any time that the control panel needs to make a call to a Central Station, line seizure will disconnect any local premises phones sharing the same telephone line.

All transmissions to the Central Stations will be sent over the primary phone line. In the event of noisy phone lines, transmissions will be sent over the backup secondary phone line.

Two phone numbers must be programmed, the primary Central Station phone number and the secondary Central Station phone number. All system reports will be transmitted to the primary Central Station phone number. Reports will automatically be sent to the secondary Central Station phone number if attempts to transmit to the primary Central Station phone number are unsuccessful. If 10 total attempts to communicate are unsuccessful, a Communicator Failure report will be displayed. Note that as an option, all reports may also be sent to the secondary Central Station phone number.

The FACP meets NFPA 72 National Fire Code reporting requirements for: (a) the type of signal, (b) condition and (c) location of the reporting premises. The general priority reporting structure is:

1. Zone Alarms and Restores
2. Zone Troubles and Restores
3. System Troubles and Restores
4. 24-hour Test

5.1 Transmittal Priorities

The integral communicator transmits highest priority events first. Events, in terms of priority, are listed below in descending order:

1. Alarms (highest priority level)
 - Pull stations
 - Waterflow
 - Smoke detector
 - Other alarm types
2. Supervisory Zone
3. System Troubles
 - Zone disabled
 - Fire drill
 - AC fail (after delay)
 - Zonal faults
 - Earth fault
 - Low battery
 - Telephone line fault
 - Notification Appliance Circuits fault
 - Communication trouble
 - Annunciator trouble
 - System off normal
4. Restoral Reports
 - Zone alarm
 - Supervisory
 - Zone(s) enabled
 - Fire drill
 - AC
 - Zone fault
 - Earth
 - Battery
 - Telephone line
 - Notification Appliance Circuits
 - Communication
 - Annunciator trouble
 - System off normal
5. 24 Hour Test (lowest priority)
The table below shows UL listed receivers which are compatible with the MS-5UD and MS-10UD.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SIA-DCS-8</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
</tr>
<tr>
<td>1</td>
<td>SIA-DCS-20</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
</tr>
<tr>
<td>2</td>
<td>Ademco Contact ID</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
<td>✔️ ✔️ ✔️ ✔️ ✔️</td>
</tr>
</tbody>
</table>

Table 5.1 Compatible UL Listed Receivers

1. With 685-8 Line Card with Rev. 4.4d software
3. With version V2.4 Receiver and 126047 Line Card Rev. G
4. With 124077V2.00 Receiver and 126047 Line Card Rev. M
5. With V.7301 Receiver S/W
6. With 01.01.03 Receiver S/W and Line Card 01.01.03
7. With software V1.86
8. With software V1.72
9. With DSP4016 and V1.6 Line Card
10. With software V3.9

IMPORTANT! It is the installer’s responsibility to ensure that the Digital Alarm Communicator/Transmitter is compatible with the Central Station Receiver, utilized by the monitoring service, prior to installation. The Compatibility Table provides a list of compatible receivers and associated software versions for the receivers. Changes in the hardware and/or software by the receiver manufacturers may affect the receiver compatibility with the FACP DACT. After completing the installation, communication between the DACT and Central Station Receiver must be tested and verified.
Section 6: Local/Remote Site Upload/Download

The control panel may be programmed or interrogated off-site via the public switched telephone network or locally using a USB cable. Any personal computer with Windows® XP or later, with a 2400 baud compatible modem or USB port and Upload/Download software PS-Tools, available for download from www.firelite.com, may serve as a Service Terminal. This allows download of the entire program or upload of the entire program, history file, walktest data, current status, system voltages, time and date.

Upload/Download Preparation

PS-Tools must be downloaded from www.firelite.com. Follow the given download instructions. Once that is done, the PS-Tools utility must be set up to communicate using either a USB port or a dial-up modem.

For local USB programming, a standard male-A to male-B USB cable must be connected from the PC’s USB port to the fire panel’s USB port (J11).

For remote modem programming, you must have the fire panel’s primary line telephone number entered in the PS-Tools site information screens for that site. You must also change the fire panel’s ring count from zero (the default) to answer after at least one ring.

Important: Modification of FACP programming requires that the panel be enabled for download (refer to “Remote Download” on page 108). Remote interrogation of panel programming, history logs, detector status, etc., is possible without enabling the remote download option.

CAUTION: After successfully downloading a program, make certain to perform the following steps:
1. Print out all programmed data via Print Mode or manually view programmed entries and compare to intended program data
2. Test all affected panel operations
3. Immediately correct any problems found

6.1 Remote Download

NFPA 72 requirements state that a technician must be on-site and at the control panel whenever the Programming Utility is used to download any information to the FACP. This applies to local and remote programming. For this reason, a new option has been added to the FACP which allows an individual at the FACP to enter a password and either enable the proprietary mode where downloading will be allowed at any time or access a specific password protected screen where downloading will be allowed regardless of the current proprietary setting. The Remote Download option can be selected from the main menu screen as shown below:

Pressing 4 for Remote Download while viewing the main menu will cause the following screen to be displayed:

The Remote Download password (default 00000) must be entered to access the Remote Download feature. Note that the default password can be changed using the Password Change option (refer to “Password Change” on page 93).

Entering the correct password will cause the following screen to be displayed:

Pressing 1 for Proprietary No (factory default setting), while viewing the Remote Download screen, will cause the display to toggle from Proprietary No to Proprietary Yes. Each press of the 1 key will cause the display to toggle between Proprietary No and Proprietary Yes. Selecting Proprietary Yes will program the FACP to allow remote programming downloads from the programming utility at all times without the need to access the Remote Download screen.

Pressing 2 for Accept Download will cause the following screen to be displayed:

While this screen is displayed, remote programming downloads are allowed regardless of the Proprietary setting. Exiting this screen will disable any further downloads to the FACP. Also, following 30 minutes of inactivity (including up/downloading), the Accept Download screen will time-out, causing the display to return to the System All Normal screen.

6.2 Transferring a Program

The first time that the control panel is contacted, a secret code is loaded in by a Service Terminal. Future upload or download requests cause verification of the secret code by the control panel before processing of data is allowed. If the secret code is not verified, the control panel will terminate the request.
Transferring a Program

While the control panel is communicating with the remote Service Terminal, one of the DACT’s red phone line active LEDs and the green Kissoff LED will remain on steady.

In order to download the panel (whether initiated at the jobsite or remotely), the following must be true:

✓ The control panel must be in the Normal Mode of operation. Downloading is not possible if the panel is in any other mode
✓ There cannot be any active communications ongoing with a Central Station receiver
✓ All active events must be successfully ‘kissed-off’ by the Central Station(s). The communicator must be in a standby state with no new information waiting to be transmitted to a Central Station

6.2.1 Security Features

Upload and download with the control panel have been carefully designed to include key security features to ensure proper functionality. Any time a transfer is initiated, the control panel and the Service Terminal will communicate and transfer data before contacting a Central Station. When the data transfers are completed and the control panel disconnects from the Service Terminal, the control panel will call the Central Station and report one of the following conditions:

• Upload/download request received
• Upload and/or download request successful
• Upload/download failed

The key features are listed and explained in the following sections.

Secret Code Verification

A secret code is stored in the control panel by a Service Terminal to prevent unauthorized access. The secret code is created at the Service Terminal by the master user and cannot be viewed or changed by anyone other than a master user. Viewing of the secret code is prohibited at the control panel. Prior to allowing an upload or download of data, the control panel will verify the secret code transmitted by the Service Terminal.

Time-out at Control Panel

Upon answering an incoming (modem) call on the primary Central Station phone line, the control panel will listen for a modem connection signal. If this signal is not received within 50 seconds, the control panel will disconnect the call. Upon successful connection (secret code verified), if no communication occurs within 30 minutes, the panel will disconnect the call. Upon time-out, transfer activity will be reported to the Central Station (if enabled) and the connection will be terminated.

Error Checking

As each block of data is received by the control panel, it is checked for accuracy. If an error is detected, the block is retransmitted until correct, up to a maximum of four times. If the Secret Code is not verified and four errors occur, the call is disconnected and the report that the upload/download was not successful is called to the Central Station(s).

Central Station Data Protection

The primary and secondary Central Station phone numbers, communications format, account code, test time and programmable event codes are vital Central Station information. These blocks of data are protected from partial programming due to faulty phone connections, line noise and other errors. This prevents the panel from being confused due to a wrong phone number, account code, test time and most critical formatting errors.
Section 7: Power Supply Calculations

7.1 Overview
This section contains instructions and tables for calculating power supply currents in alarm and standby conditions. This is a four-step process, consisting of the following:
1. Calculating the total amount of AC branch circuit current required to operate the system
2. Calculating the power supply load current for non-fire and fire alarm conditions and calculating the secondary (battery) load
3. Calculating the size of batteries required to support the system if an AC power loss occurs
4. Selecting the proper batteries for your system

7.2 Calculating the AC Branch Circuit
The control panel requires connection to a separate, dedicated AC branch circuit, which must be labeled FIRE ALARM. This branch circuit must connect to the line side of the main power feed of the protected premises. No other non-fire alarm equipment may be powered from the fire alarm branch circuit. The branch circuit wire must run continuously, without any disconnect devices, from the power source to the control panel. Overcurrent protection for this circuit must comply with Article 760 of the National Electrical Codes as well as local codes. Use 14 AWG (2.00 mm²) wire with 600 volt insulation for this branch circuit.

Use Table 7.1, to determine the total amount of current, in AC amperes (A), that must be supplied to the system.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Number of Devices</th>
<th>Current Draw (AC amps)</th>
<th>Total Current per Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-5UD-3/MS-10UD-3</td>
<td>1 X</td>
<td>1.00</td>
<td>=</td>
</tr>
<tr>
<td>or MS-5UD-7(C)/MS-10UD-7(C)</td>
<td></td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>or MS-5UD-3E/MS-10UD-3E</td>
<td></td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>or MS-5UD-7E/MS-10UD-7E</td>
<td></td>
<td>2.20</td>
<td></td>
</tr>
</tbody>
</table>

| [] X [] = | [] X [] = |

Sum Column for AC Branch Current Required =

Table 7.1 AC Branch Circuit Requirements

7.3 Calculating the System Current Draw

7.3.1 Overview
The control panel must be able to power all internal and external devices continuously during the non-fire alarm condition. To calculate the non-fire alarm load on the system power supply when primary power is applied, use Calculation Column 1 in Table 7.3 on page 111. The control panel must support a larger load current during a fire alarm condition. To calculate the fire alarm load on the power supply, use Calculation Column 2 in Table 7.3 on page 111. The secondary power source (batteries) must be able to power the system during a primary power loss. To calculate the non-fire alarm load on the secondary power source, use Calculation Column 3 in Table 7.3 on page 111.

When calculating current draw and the battery size, note the following:
• 'Primary' refers to the main power source for the control panel
• 'Secondary' refers to the control panel’s backup batteries
• All currents are given in amperes (A). Section 7.2 shows how to convert milliamperes and microamperes to full amperes.

<table>
<thead>
<tr>
<th>To convert...</th>
<th>Multiply</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milliamperes (mA) to amperes (A)</td>
<td>mA x 0.001</td>
<td>3 mA x 0.001 = 0.003A</td>
</tr>
<tr>
<td>Microamperes (µA) to amperes (A)</td>
<td>µA x 0.000001</td>
<td>300 µA x 0.000001 = 0.0003 A</td>
</tr>
</tbody>
</table>

Table 7.2 Converting to Full Amperes

7.3.2 How to Use Table 7.3 on page 111 to Calculate System Current Draw
Use Table 7.3 on page 111 to calculate current draws as follows:
1. Enter the quantity of devices in all three columns
2. Enter the current draw where required. Refer to the Device Compatibility Document for compatible devices and their current draw
3. Calculate the current draws for each in all columns
4. Sum the total current for each column
5. Copy the totals from Column 2 and Column 3 to Table 7.4 on page 112

Following are the types of current that can be entered into Table 7.3 on page 111:
Calculating the System Current Draw

Power Supply Calculations

- **Calculation Column 1** - The primary supply current load that the control panel must support during a non-fire alarm condition, with AC power applied.
- **Calculation Column 2** - The primary supply current load that the control panel must support during a fire alarm condition, with AC power applied.
- **Calculation Column 3** - The standby current drawn from the batteries in a non-fire alarm condition during a loss of AC power.

Table 7.3 contains three columns for calculating current draws. For maximum output current availability per circuit and per panel, refer to Section 1.2, “Specifications”, on page 13. For each column, calculate the current and enter the total (in amperes) in the bottom row. When finished, copy the totals from Calculation Column 2 and Calculation Column 3 to Table 7.4 on page 112.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Calculation Column 1</th>
<th>Calculation Column 2</th>
<th>Calculation Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qty</td>
<td>X[current draw]</td>
<td>Total</td>
</tr>
<tr>
<td>Main Circuit Board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-5UD or MS-10UD</td>
<td>1</td>
<td>X[0.110]=</td>
<td></td>
</tr>
<tr>
<td>CAC-5X</td>
<td>[]</td>
<td>X[0.001]=</td>
<td>[]</td>
</tr>
<tr>
<td>4XTMF</td>
<td>[]</td>
<td>X[0.005]=</td>
<td>[]</td>
</tr>
<tr>
<td>ANN-SEC card</td>
<td>[]</td>
<td>X[0.003]=</td>
<td>[]</td>
</tr>
<tr>
<td>ANN-80(C)</td>
<td>[]</td>
<td>X[0.037]=</td>
<td>[]</td>
</tr>
<tr>
<td>ANN-I/O</td>
<td>[]</td>
<td>X[0.035]=</td>
<td>[]</td>
</tr>
<tr>
<td>ANN-RLY</td>
<td>[]</td>
<td>X[0.015]=</td>
<td>[]</td>
</tr>
<tr>
<td>ANN-(R)LED³</td>
<td>[]</td>
<td>X[0.028]=</td>
<td>[]</td>
</tr>
<tr>
<td>ANN-S/PG</td>
<td>[]</td>
<td>X[0.045]=</td>
<td>[]</td>
</tr>
<tr>
<td>2-wire Detector Heads</td>
<td>[]</td>
<td>X[] ⁴=</td>
<td>[]</td>
</tr>
<tr>
<td>4-wire Detector Heads</td>
<td>[]</td>
<td>X[] ⁴=</td>
<td>[]</td>
</tr>
<tr>
<td>Power Supervision Relays⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC #1</td>
<td>[]</td>
<td>X[]</td>
<td>[]</td>
</tr>
<tr>
<td>NAC #2</td>
<td>[]</td>
<td>X[]</td>
<td>[]</td>
</tr>
<tr>
<td>NAC #3</td>
<td>[]</td>
<td>X[]</td>
<td>[]</td>
</tr>
<tr>
<td>NAC #4</td>
<td>[]</td>
<td>X[]</td>
<td>[]</td>
</tr>
<tr>
<td>Current Draw from TB9 (nonalarm)</td>
<td>[]</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Sum each column for totals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Primary Non-Alarm = | Secondary Alarm = | Secondary Non-Alarm = |

Table 7.3 System Current Draw Calculations

1. If using the Reverse Polarity Alarm output, add 0.005 amps; if using the Reverse Polarity Trouble output, add another 0.005 amps.
2. The current draw shown represents one zone (IDC) on the main circuit board in alarm. One zone consumes 0.040 amps.
3. An ANN-LED is supplied standard with the MS-5UDC and MS-10UDC.
4. Refer to the Device Compatibility Document for standby current.
5. Enter the number of IDCs used minus one.
6. Must use compatible listed Power Supervision Relay.
7. Total current draw listed above cannot exceed 3.25 amps for the MS-5UD-3(E), 3.28 for the MS-10UD-3(E), 7.25 for the MS-5UD-7(C/E), and 7.28 for the MS-10UD-7(C/E).
7.4 Calculating the Battery Size

Use Table 7.4 to calculate the total Standby and Alarm load in ampere hours (AH). This total load determines the battery size (in AH), required to support the control panel under the loss of AC power. Complete Table 7.4 as follows:

1. Enter the totals from Table 7.3 on page 111, Calculation Columns 2 and 3 where shown
2. Enter the NFPA Standby and Alarm times (refer to ‘NFPA Requirements’ below)
3. Calculate the ampere hours for Standby and Alarm, then sum the Standby and Alarm ampere hours
4. Multiply the sum by the derating factor of 1.2 to calculate the proper battery size (in AH)
5. Write the ampere hour requirements on the Protected Premises label located inside the cabinet door

<table>
<thead>
<tr>
<th>Secondary Standby Load (total from Table 7.3 Calculation Column 3)</th>
<th>Required Standby Time (24 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>X[]</td>
</tr>
<tr>
<td></td>
<td>= AH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Alarm Load (total from Table 7.3 Calculation Column 2)</th>
<th>Required Alarm Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>(for 5 min., enter 0.084, for 10 min., enter 0.168)</td>
</tr>
<tr>
<td></td>
<td>X[]</td>
</tr>
<tr>
<td></td>
<td>= AH</td>
</tr>
</tbody>
</table>

Sum of Standby and Alarm Ampere Hours	= AH
Multiply by the Derating Factor	X 1.2
Battery Size, Total Ampere Hours Required	= AH

Table 7.4 Total Secondary Power Requirements at 24 VDC

7.4.1 NFPA Battery Requirements

NFPA 72 Local, Central and Proprietary Fire Alarm Systems require 24 hours of standby power followed by 5 minutes in alarm

7.4.2 Selecting and Locating Batteries

Select batteries that meet or exceed the total ampere hours calculated in Table 7.4. The control panel can charge batteries in the 7 AH to 26 AH range. The control panel cabinet is capable of housing batteries up to 18 AH. Batteries larger than 18 AH require the BB-26, BB-55, or other UL listed external battery cabinet.

For Canadian applications, the minimum battery size is 12 AH and the maximum battery size is 18 AH.
Appendix A: Ademco Contact ID Format Event Code Descriptions

This appendix describes the various Event Codes and their messages which are available for the Ademco Contact ID Format.

A.1 Transmission Format Between DACT and Receiver

The transmission string for the Ademco Contact ID Format is as follows:

SSSS 18 QXYZ GG CCC

where

SSSS = Four digit Subscriber ID Account Code
18 = Identifies transmission as Contact ID to the receiver at the Central Station
Q = Event Qualifier where 1 = New Event and 3 = New Restore
XYZ = Event code
GG = Group number
CCC = Zone number

Notes:
1. 18, which is used in the reporting structure to identify the transmission as Contact ID, is not printed out in the alarm and trouble report.
2. GG Group Number is fixed at '00' and cannot be changed.
3. CCC for Zone Number is transmitted as '001' for zone 1 up to '010' for zone 10

A.2 Ademco Contact ID Typical Printout

A typical printout from a Central Station receiver (such as the Ademco 685) of alarm and trouble reports in the Ademco Contact ID Reporting Structure follows:

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Rcvr/Line ID</th>
<th>SSSS</th>
<th>QXYZ</th>
<th>GG</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E110</td>
<td>00</td>
<td>C001 - general fire alarm on zone one</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E111</td>
<td>00</td>
<td>C002 - smoke detector alarm on zone two</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E380</td>
<td>00</td>
<td>C003 - fault on zone three</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E570</td>
<td>00</td>
<td>C009 - Zone nine disabled</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R110</td>
<td>00</td>
<td>C001 - Zone one alarm restored</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R111</td>
<td>00</td>
<td>C002 - smoke detector zone two restored</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R380</td>
<td>00</td>
<td>C003 - zone three fault restored</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R570</td>
<td>00</td>
<td>C009 - zone nine reenabled</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E158</td>
<td>00</td>
<td>C006 - high temperature, zone six</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E151</td>
<td>00</td>
<td>C007 - gas detected, zone seven</td>
</tr>
</tbody>
</table>

Notes:
1. 11 is an example of a Receiver/Line Card, showing which receiver and line card the message was transmitted to.
2. Q, which is the Event Qualifier for the reporting structure, is printed out in the report as an E for New Event or R for New Restore.

EVENT CODE CLASSIFICATIONS

100 ALARMS 200 SUPERVISORY 300 TROUBLES 400 OPEN/CLOSE REMOTE ACCESS 500 DISABLES/ BYPASSES 600 TEST/ MISC.

EVENT MESSAGE

Medical Alarms - 100
100 Medical EMERG - Personal Emergency - #
101 Pendant Transmitter EMERG - Personal Emberrgency - #
Ademco Contact ID Format Event Code Descriptions

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 Fail to report in</td>
<td>EMERG - Fail to Check-in - #</td>
</tr>
</tbody>
</table>

Fire Alarm - 110
- 110 Fire Alarm: FIRE - Fire Alarm - #
- 111 Smoke: FIRE - Smoke Detector - #
- 112 Combustion: FIRE - Combustion - #
- 113 Waterflow: FIRE - Waterflow - #
- 114 Heat: FIRE - Heat Sensor - #
- 115 Pull station: FIRE - Pull Station - #
- 116 Duct: FIRE - Duct Sensor - #
- 117 Flame: FIRE - Flame Sensor - #
- 118 Near Alarm: FIRE - Near Alarm - #

Panic Alarms - 120
- 120 Panic Alarm: PANIC - Panic - #
- 121 Duress: PANIC - Duress
- 122 Silent: PANIC - Silent Panic - #
- 123 Audible: PANIC - Audible Panic - #

Burglar Alarms - 130
- 130 Burglary: BURG - Burglary - #
- 131 Perimeter: BURG - Perimeter - #
- 132 Interior: BURG - Interior - #
- 133 24-Hour: BURG - 24-Hour - #
- 134 Entry/Exit: BURG - Entry/Exit - #
- 135 Day/Night: BURG - Day/Night - #
- 136 Outdoor: BURG - Outdoor - #
- 137 Tamper: BURG - Tamper - #
- 138 Near Alarm: BURG - Near Alarm - #

General Alarms - 140
- 140 General Alarm: ALARM - General Alarm - #
- 141 Polling loop open: ALARM - Polling Loop Open - #
- 142 Polling loop short: ALARM - Polling Loop Short - #
- 143 Expansion module failure: ALARM - Exp. Module Fail - #
- 144 Sensor tamper: ALARM - Sensor Tamper - #
- 145 Expansion module tamper: ALARM - Exp. Module Tamper - #

24 Hour Non-Burglary - 150 and 160
- 150 24-Hour Non-Burg: ALARM - 24-Hr. Non-Burg - #
- 151 Gas detected: ALARM - Gas Detected - #
- 152 Refrigeration: ALARM - Refrigeration - #
- 153 Loss of heat: ALARM - Heating System - #
- 154 Water leakage: ALARM - Water Leakage - #
- 155 Foil break: ALARM - Foil Break - #
- 156 Day trouble: ALARM - Day Trouble - #
- 157 Low bottled gas level: ALARM - Low Gas Level - #
Ademco Contact ID Typical Printout

Ademco Contact ID Format Event Code Descriptions

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>158 High temp</td>
<td>ALARM - High Temperature - #</td>
</tr>
<tr>
<td>159 Low temp</td>
<td>ALARM - Low Temperature - #</td>
</tr>
<tr>
<td>161 Loss of air flow</td>
<td>ALARM - Air Flow - #</td>
</tr>
</tbody>
</table>

Fire Supervisory - 200 and 210

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Fire supervisory</td>
<td>SUPER. - Fire Supervisory - #</td>
</tr>
<tr>
<td>201 Low water pressure</td>
<td>SUPER. - Low Water Pressure - #</td>
</tr>
<tr>
<td>202 Low CO2</td>
<td>SUPER. - Low CO2</td>
</tr>
<tr>
<td>203 Gate valve sensor</td>
<td>SUPER. - Gate Valve - #</td>
</tr>
<tr>
<td>204 Low water level</td>
<td>SUPER. - Low Water Level - #</td>
</tr>
<tr>
<td>205 Pump activated</td>
<td>SUPER. - Pump Activation - #</td>
</tr>
<tr>
<td>206 Pump failure</td>
<td>SUPER. - Pump Failure - #</td>
</tr>
</tbody>
</table>

System Troubles - 300 and 310

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 System trouble</td>
<td>TROUBLE - System Trouble</td>
</tr>
<tr>
<td>301 AC loss</td>
<td>TROUBLE - AC Power</td>
</tr>
<tr>
<td>302 Low system battery</td>
<td>TROUBLE - System Low Battery</td>
</tr>
<tr>
<td>303 RAM checksum bad</td>
<td>TROUBLE - BAD RAM Checksum (restore not applicable)</td>
</tr>
<tr>
<td>304 ROM checksum bad</td>
<td>TROUBLE - BAD ROM Checksum (restore not applicable)</td>
</tr>
<tr>
<td>305 System reset</td>
<td>TROUBLE - System Reset (restore not applicable)</td>
</tr>
<tr>
<td>306 Panel program changed</td>
<td>TROUBLE - Programming Changed (restore not applicable)</td>
</tr>
<tr>
<td>307 Self-test failure</td>
<td>TROUBLE - Self Test Failure</td>
</tr>
<tr>
<td>308 System shutdown</td>
<td>TROUBLE - System Shutdown</td>
</tr>
<tr>
<td>309 Battery test failure</td>
<td>TROUBLE - Battery Test Failure</td>
</tr>
<tr>
<td>310 Ground fault</td>
<td>TROUBLE - Ground Fault - #</td>
</tr>
<tr>
<td>311 No battery</td>
<td>TROUBLE - No Battery</td>
</tr>
</tbody>
</table>

Sounder/Relay Troubles - 320

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>320 Sounder/Relay</td>
<td>TROUBLE - Sounder/Relay - #</td>
</tr>
<tr>
<td>321 Bell 1</td>
<td>TROUBLE - Bell/Siren - #1</td>
</tr>
<tr>
<td>322 Bell 2</td>
<td>TROUBLE - Bell/Siren - #2</td>
</tr>
<tr>
<td>323 Alarm relay</td>
<td>TROUBLE - Alarm Relay</td>
</tr>
<tr>
<td>324 Trouble relay</td>
<td>TROUBLE - Trouble Relay</td>
</tr>
<tr>
<td>325 Reversing</td>
<td>TROUBLE - Reversing Relay</td>
</tr>
<tr>
<td>326 Bell 3</td>
<td>TROUBLE - Bell/Siren - #3</td>
</tr>
<tr>
<td>327 Bell 4</td>
<td>TROUBLE - Bell/Siren - #4</td>
</tr>
</tbody>
</table>

System Peripheral Troubles - 330 and 340

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 System peripheral</td>
<td>TROUBLE - Sys. Peripheral - #</td>
</tr>
<tr>
<td>331 Polling loop open</td>
<td>TROUBLE - Polling Loop Open</td>
</tr>
<tr>
<td>332 Polling loop short</td>
<td>TROUBLE - Polling Loop Short</td>
</tr>
<tr>
<td>333 Expansion module failure</td>
<td>TROUBLE - Exp. Module Fail - #</td>
</tr>
<tr>
<td>334 Repeater failure</td>
<td>TROUBLE - Repeater Failure - #</td>
</tr>
<tr>
<td>335 Local printer paper out</td>
<td>TROUBLE - Printer Paper Out</td>
</tr>
<tr>
<td>336 Local printer failure</td>
<td>TROUBLE - Local Printer</td>
</tr>
</tbody>
</table>

Communication Troubles - 350 and 360
<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 Communication</td>
<td>TROUBLE - Communication Trouble</td>
</tr>
<tr>
<td>351 Telco 1 fault</td>
<td>TROUBLE - Phone Line #1</td>
</tr>
<tr>
<td>352 Telco 2 fault</td>
<td>TROUBLE - Phone Line #2</td>
</tr>
<tr>
<td>353 Long range radio xmitter fault</td>
<td>TROUBLE - Radio Transmitter</td>
</tr>
<tr>
<td>354 Fail to communicate</td>
<td>TROUBLE - Fail to Communicate</td>
</tr>
<tr>
<td>355 Loss of radio supervision</td>
<td>TROUBLE - Radio Supervision</td>
</tr>
<tr>
<td>356 Loss of central polling</td>
<td>TROUBLE - Central Radio Polling</td>
</tr>
</tbody>
</table>

Protection Loop Troubles - 370

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>370 Protection loop</td>
<td>TROUBLE - Protection Loop - #</td>
</tr>
<tr>
<td>371 Protection loop open</td>
<td>TROUBLE - Protection Loop Open - #</td>
</tr>
<tr>
<td>372 Protection loop short</td>
<td>TROUBLE - Protection Loop Short - #</td>
</tr>
<tr>
<td>373 Fire trouble</td>
<td>TROUBLE - Fire Loop - #</td>
</tr>
</tbody>
</table>

Sensor Troubles - 380

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>380 Sensor trouble</td>
<td>TROUBLE - Sensor Trouble - #</td>
</tr>
<tr>
<td>381 Loss of supervision - RF</td>
<td>TROUBLE - RF Sensor Supervision - #</td>
</tr>
<tr>
<td>382 Loss of supervision - RPM</td>
<td>TROUBLE - RPM Sensor Supervision - #</td>
</tr>
<tr>
<td>383 Sensor tamper</td>
<td>TROUBLE - Sensor Tamper - #</td>
</tr>
<tr>
<td>384 RF transmitter low battery</td>
<td>TROUBLE - RF Sensor Batt. - #</td>
</tr>
</tbody>
</table>

Open/Close - 400

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Open/Close</td>
<td>OPENING</td>
</tr>
<tr>
<td>401 Open/Close by user</td>
<td>OPENING - User #</td>
</tr>
<tr>
<td>402 Group Open/Close</td>
<td>OPENING - Group User #</td>
</tr>
<tr>
<td>403 Automatic Open/Close</td>
<td>OPENING - Automatic</td>
</tr>
<tr>
<td>404 Late Open/Close</td>
<td>OPENING - Late</td>
</tr>
<tr>
<td>405 Deferred Open/Close</td>
<td>Opening not used</td>
</tr>
<tr>
<td>406 Cancel</td>
<td>OPENING - Cancel</td>
</tr>
<tr>
<td>407 Remote arm/disarm</td>
<td>OPENING - Remote</td>
</tr>
<tr>
<td>408 Quick arm</td>
<td>Opening not applicable</td>
</tr>
<tr>
<td>409 Keyswitch Open/Close</td>
<td>OPENING - Keyswitch</td>
</tr>
</tbody>
</table>

Remote Access - 410

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>411 Callback request made</td>
<td>REMOTE - Callback Requested (restore not applicable)</td>
</tr>
<tr>
<td>412 Success - download/access</td>
<td>REMOTE - Successful Access (restore not applicable)</td>
</tr>
<tr>
<td>413 Unsuccessful access</td>
<td>REMOTE - Unsuccessful Access (restore not applicable)</td>
</tr>
<tr>
<td>414 System shutdown</td>
<td>REMOTE - System Shutdown</td>
</tr>
<tr>
<td>415 Dialer shutdown</td>
<td>REMOTE - Dialer Shutdown</td>
</tr>
<tr>
<td>416 Success - upload/access</td>
<td>REMOTE - Successful Access (restore not applicable)</td>
</tr>
</tbody>
</table>

Access Control - 420

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>421 Access denied</td>
<td>ACCESS - Access Denied - User # (restore not used)</td>
</tr>
<tr>
<td>422 Access report by user</td>
<td>ACCESS - Access Gained - User # (restore not used)</td>
</tr>
</tbody>
</table>

System Disables - 500 and 510
<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sounder/Relay Disables - 520</td>
<td></td>
</tr>
<tr>
<td>520 Sounder/Relay disable</td>
<td>DISABLE - Sounder/Relay - #</td>
</tr>
<tr>
<td>521 Bell 1 disable</td>
<td>DISABLE - Bell/Siren - #1</td>
</tr>
<tr>
<td>522 Bell 2 disable</td>
<td>DISABLE - Bell/Siren - #2</td>
</tr>
<tr>
<td>523 Alarm relay disable</td>
<td>DISABLE - Alarm Relay</td>
</tr>
<tr>
<td>524 Trouble relay disable</td>
<td>DISABLE - Trouble Relay</td>
</tr>
<tr>
<td>525 Reversing relay disable</td>
<td>DISABLE - Reversing Relay</td>
</tr>
<tr>
<td>526 Bell 3 disable</td>
<td>DISABLE - Bell/Siren - #3</td>
</tr>
<tr>
<td>527 Bell 4 disable</td>
<td>DISABLE - Bell/Siren - #4</td>
</tr>
<tr>
<td>System Peripheral Disables - 530 and 540</td>
<td></td>
</tr>
<tr>
<td>Communication Disables - 550 and 560</td>
<td></td>
</tr>
<tr>
<td>551 Dialer disabled</td>
<td>DISABLE - Dialer Disable</td>
</tr>
<tr>
<td>552 Radio transmitter disabled</td>
<td>DISABLE - Radio Disable</td>
</tr>
<tr>
<td>Bypasses - 570</td>
<td></td>
</tr>
<tr>
<td>570 Zone bypass</td>
<td>BYPASS - Zone Bypass - #</td>
</tr>
<tr>
<td>571 Fire bypass</td>
<td>BYPASS - Fire Bypass - #</td>
</tr>
<tr>
<td>572 24-Hour zone bypass</td>
<td>BYPASS - 24-Hour Bypass - #</td>
</tr>
<tr>
<td>573 Burglar bypass</td>
<td>BYPASS - Burg. Bypass - #</td>
</tr>
<tr>
<td>574 Group bypass</td>
<td>BYPASS - Group Bypass - #</td>
</tr>
<tr>
<td>Test Misc. - 600</td>
<td></td>
</tr>
<tr>
<td>601 Manual trigger test</td>
<td>TEST - Manually Triggered</td>
</tr>
<tr>
<td>602 Periodic test report</td>
<td>TEST - Periodic</td>
</tr>
<tr>
<td>603 Periodic RF transmission</td>
<td>TEST - Periodic Radio</td>
</tr>
<tr>
<td>604 Fire test</td>
<td>TEST - Fire Test</td>
</tr>
<tr>
<td>605 Status report to follow</td>
<td>STATUS - Status Follows</td>
</tr>
<tr>
<td>606 Listen-in to follow</td>
<td>LISTEN - Listen-in Active</td>
</tr>
<tr>
<td>607 Walk test mode</td>
<td>TEST - Walk Test Mode</td>
</tr>
<tr>
<td>608 System abnormal test</td>
<td>TEST - System Abnormal Test</td>
</tr>
</tbody>
</table>
Appendix B: NFPA Standard-Specific Requirements

The MS-5UD/MS-10UD has been designed for use in commercial, industrial and institutional applications and meets the requirements for service under the National Fire Protection Association (NFPA) Standards outlined in this Appendix. The minimum system components required for compliance with the appropriate NFPA standard are listed below:

MS-5UD/MS-10UD Control Panel
Contains the main control board, cabinet (backbox and door), main power supply and transformer.

Batteries
Refer to “Power Supply Calculations” on page 110, for Standby Power Requirements.

Initiating Devices
Connected to one of the control panel's Initiating Device Circuits.

Notification Appliances
Connected to the control panel's Notification Appliance Circuits via a control module.

The following additional equipment is needed for compliance with the NFPA 72 standards listed below:

NFPA 72 NATIONAL FIRE ALARM STANDARDS FOR:

NFPA 72 Central Station Service (Protected Premises Unit) or Remote Station Service

- Onboard Digital Alarm Communicator Transmitter for connection to a compatible listed Central Station DACR or Protected Premises Receiving Unit. This unit must be installed as outlined in “Digital Alarm Communicator/Transmitter” on page 17.
- OR
 - 411UD may be installed as illustrated in Figure B.1, “MS-5UD/MS-10UD FACP Connection to 411UD,” on page 119.
- OR
 - 4XTMF Transmitter Module for connection to the RS82 Remote Station Receiver. See Figure B.3, “Remote Station Connection Using 4XTMF Module,” on page 121, for installation instructions for this unit.

NFPA 72 Auxiliary Fire Alarm System
4XTMF Transmitter Module for connection to a compatible listed Local Energy Municipal Box. This unit must be installed as illustrated in the section titled “4XTMF Transmitter Module Installation” on page 33 and as outlined in Figure B.2, “Municipal Box Connected to 4XTMF Transmitter Module,” on page 120.

NFPA 72 Proprietary Fire Alarm System
MS-5UD/MS-10UD Alarm, Trouble and Supervisory contacts connected to Transmitter(s). See Figure B.4, “Proprietary Protective Signaling System,” on page 122, for installation instructions for this unit.
The following figure illustrates an example of Central Station/Remote Station Reporting using a 411UD. The relay contacts from the MS-5UD/MS-10UD may be used to trip any dialer UL listed for Central Station/Remote Station Reporting Services.

Figure B.1 MS-5UD/MS-10UD FACP Connection to 411UD

Table B.1 411UD Connections to FACP

<table>
<thead>
<tr>
<th></th>
<th>411UD</th>
<th>FACP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>TB2-1</td>
<td>TB8-1</td>
</tr>
<tr>
<td></td>
<td>TB2-2</td>
<td>TB8-3</td>
</tr>
<tr>
<td>Trouble</td>
<td>TB2-3</td>
<td>TB8-4</td>
</tr>
<tr>
<td></td>
<td>TB2-4</td>
<td>TB8-6</td>
</tr>
<tr>
<td>Supervisory</td>
<td>TB2-5</td>
<td>TB8-7</td>
</tr>
<tr>
<td></td>
<td>TB2-6</td>
<td>TB8-9</td>
</tr>
</tbody>
</table>
NFPA Standard-Specific Requirements

Notes:
1. Reference the 411UD Manual for additional information
2. Program the 411UD for slave operation
3. The MS-5UD/MS-10UD must be programmed for AC Loss Reporting Delay. This prevents the immediate transmission of a trouble on the loss of AC power
4. All connections between the control panel and the 411UD must be in conduit, less than 20 feet (610 cm) in length, in the same room
5. Any zone of the 411UD can be wired to function as alarm, trouble or supervisory. In Figure B.1 on page 119, Channel 1/Zone 1 is wired to the control panel’s alarm relay, Channel 2/Zone 2 is wired to the control panel’s trouble relay and Channel 3/Zone 3 is wired to the control panel’s supervisory relay
6. Nonresettable 24 VDC power is supplied to the 411UD via TB9 terminals configured for nonresettable power on the FACP. Jumper J4 on the 411UD must be removed for 24 VDC power
7. End-of-Line resistors must terminate all 411UD circuits, including unused circuits
8. A -VDC from the 411UD Trouble Contacts will activate the Trouble Input J6 on the FACP

NFPA 72 Auxiliary Fire Alarm System
All connections are power-limited and supervised. This application is not suitable for separate transmission of sprinkler supervisory or trouble conditions.

Notes:
1. 3 ohms maximum loop resistance allowed for wiring from control panel to Municipal Box.
2. Cut JP30 on the MS-5UD/MS-10UD main circuit board to supervise placement of 4XTMF module and circuit.
3. Cut JP24 on the MS-5UD/MS-10UD main circuit board to enable FACP Supervisory relay.
4. Refer to “4XTMF Transmitter Module Installation” on page 33 for detailed information.

Figure B.2 Municipal Box Connected to 4XTMF Transmitter Module
NFPA 72 Remote Station Protective Signaling System

Notes:
1. Cut Jumper JP30 on the MS-5UD/MS-10UD main circuit board to supervise placement of the 4XTMF module.
2. Refer to “4XTMF Transmitter Module Installation” on page 33 for detailed information.

RS82 Remote Station Receiver UL listed. Refer to Instruction Manual for Remote Station Receiver Model RS82.

Figure B.3 Remote Station Connection Using 4XTMF Module
NFPA 72 Proprietary Protective Signaling Systems

Notes:
1. Connection between the MS-5UD/MS-10UD and the transmitter are supervised by the transmitter.
2. This MS-5UD/MS-10UD Transmitter arrangement can be employed for NFPA 72 Proprietary Protective Signaling System.
3. Potter Electric Model EFT-C has not been tested for UL 864 9th Edition and is for use in retrofit applications only.

Figure B.4 Proprietary Protective Signaling System
B.1 Central Station/Remote Station Transmitter: Connection to FACP Dry Contacts

The dry contacts of the FACP programmable relays can be used to trip a UL-864 Listed Central Station/Remote Station Transmitter. The FACP contacts must be supervised by the Central Station/Remote Station Transmitter module using End-of-Line Resistors (ELRs) with a value determined by the Transmitter manufacturer. Power is also provided by the Central Station/Remote Station Transmitter manufacturer. Refer to the Central Station/Remote Station Transmitter manufacturer’s manual for details.

*Note: The Trouble Relay is a fail-safe relay. With power applied to the FACP and no troubles in the panel, the wiring should be connected to the NO and C contacts as indicated in the illustration.

![Diagram of FACP Dry Contacts Connection to Central Station/Remote Station Transmitter](image-url)
Appendix C: FACP with Keltron

The following figure illustrates the connections between the FACP and Keltron Receiver/Transmitter.

CAUTION: POSSIBLE EQUIPMENT DAMAGE

For reasons of wiring diagram clarity, terminal designations of Keltron modules are not shown in actual order. Follow Keltron manual and module markings for exact terminal locations to prevent severe module damage!

IMPORTANT! All connections between the FACP and Keltron modules must be made within 20 feet and enclosed within conduit or equivalently protected against mechanical injury.

Keltron 95M3158 TTM-RPS
1. Terminals 7 and 8: Remote station alarm/trouble inputs.
2. Terminals 9 and 10: Sprinkler supervisory input.

Fire Alarm Control Panel
(terminal blocks are not shown in their actual positions in order to clarify wiring connections)

Figure C.1 Keltron Wiring

Note: For more information, refer to the Keltron manual.

Note: Cut TBL jumper on 4XTMF module to send alarm/trouble signal from the same pair or terminals.
Appendix D: Wire Requirements

Connecting external system accessories to the main circuits must be carefully considered to ensure proper operation. It is important to use the correct type of wire, gauge and run length for each circuit. Reference the chart below to specify wire requirements and limitations for each circuit.

<table>
<thead>
<tr>
<th>CIRCUIT CONNECTIONS</th>
<th>WIRE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Type</td>
<td>Circuit Function</td>
</tr>
<tr>
<td>Initiating Device Circuit (power-limited)</td>
<td>Connects to Initiating Devices</td>
</tr>
<tr>
<td>ANN-BUS (EIA-485) power-limited</td>
<td>Communication for ANN-BUS annunciator and relay modules</td>
</tr>
<tr>
<td>ANN-BUS Power</td>
<td>Power for ANN-BUS annunciators</td>
</tr>
<tr>
<td>24 VDC Regulated, resettable, nonresettable</td>
<td>Power for accessories and 4-wire devices</td>
</tr>
<tr>
<td>Auxiliary Trouble Input</td>
<td>Open Collector trouble input for CHG-75, CHG-120F, etc.</td>
</tr>
<tr>
<td>Remote Sync Output</td>
<td>Provides strobe and normal sync for remote NAC power supplies</td>
</tr>
<tr>
<td>NAC Outputs</td>
<td>Connects to NAC devices or Release devices</td>
</tr>
</tbody>
</table>

Table D.1 FACP Wire Specifications

D.1 MS-5UD-3(E) & MS-10UD-3(E) NAC Wiring

The following table lists NAC wiring requirements for the MS-5UD-3(E) & MS-10UD-3(E) FACP which utilizes the FLPS-3 power supply.

<table>
<thead>
<tr>
<th>NAC Load (Amps)</th>
<th>Max. allowable total loop resistance (ohms)</th>
<th>CLASS-B Max. allowable wire pair length (feet)</th>
<th>CLASS-A Max. allowable wire pair length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AWG 12 solid</td>
<td>AWG 14 solid</td>
<td>AWG 16 solid</td>
</tr>
<tr>
<td>0.25</td>
<td>6.00</td>
<td>1554</td>
<td>977</td>
</tr>
<tr>
<td>0.5</td>
<td>3.00</td>
<td>777</td>
<td>489</td>
</tr>
<tr>
<td>0.75</td>
<td>2.00</td>
<td>518</td>
<td>326</td>
</tr>
<tr>
<td>1</td>
<td>1.50</td>
<td>389</td>
<td>244</td>
</tr>
<tr>
<td>1.25</td>
<td>1.20</td>
<td>311</td>
<td>195</td>
</tr>
<tr>
<td>1.5</td>
<td>1.00</td>
<td>259</td>
<td>163</td>
</tr>
<tr>
<td>1.75</td>
<td>0.86</td>
<td>222</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>194</td>
<td>122</td>
</tr>
<tr>
<td>2.25</td>
<td>0.67</td>
<td>173</td>
<td>109</td>
</tr>
<tr>
<td>2.5</td>
<td>0.60</td>
<td>155</td>
<td>98</td>
</tr>
</tbody>
</table>

Table D.2 NAC Wiring Requirements for FACP with FLPS-3 Power Supply

NOTE: Calculations are based on Direct-Current Resistance data for uncoated copper wire, per National Electrical Code (2005 Edition) Table 8, Conductor Properties.

NOTE: These distances reflect the worst case scenario and are based on the current draw of the highest candela strobes at the low end of the supported NAC voltage with the entire load at the end of the circuit. Further distances can be achieved by performing a point to point voltage calculation that more accurately reflects the specific devices used and how they are dispersed on the circuit.
D.2 MS-5UD-7(C/E) & MS-10UD-7(C/E) NAC Wiring

The following table lists NAC wiring requirements for the MS-5UD-7(C/E) & MS-10UD-7(C/E) FACP which utilizes the FLPS-7 power supply.

<table>
<thead>
<tr>
<th>NAC Load (Amps)</th>
<th>Max. allowable total loop resistance (ohms)</th>
<th>CLASS-B</th>
<th></th>
<th>CLASS-A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max. allowable wire pair length (feet)</td>
<td>AWG 12 solid</td>
<td>AWG 14 solid</td>
<td>AWG 16 solid</td>
</tr>
<tr>
<td>0.25</td>
<td>6.00</td>
<td>1554</td>
<td>977</td>
<td>613</td>
</tr>
<tr>
<td>0.5</td>
<td>3.00</td>
<td>777</td>
<td>489</td>
<td>307</td>
</tr>
<tr>
<td>0.75</td>
<td>2.00</td>
<td>518</td>
<td>326</td>
<td>204</td>
</tr>
<tr>
<td>1.0</td>
<td>1.50</td>
<td>389</td>
<td>244</td>
<td>153</td>
</tr>
<tr>
<td>1.25</td>
<td>1.20</td>
<td>311</td>
<td>195</td>
<td>123</td>
</tr>
<tr>
<td>1.5</td>
<td>1.00</td>
<td>259</td>
<td>163</td>
<td>102</td>
</tr>
<tr>
<td>1.75</td>
<td>0.86</td>
<td>222</td>
<td>140</td>
<td>88</td>
</tr>
<tr>
<td>2.0</td>
<td>0.75</td>
<td>194</td>
<td>122</td>
<td>77</td>
</tr>
<tr>
<td>2.25</td>
<td>0.67</td>
<td>173</td>
<td>109</td>
<td>68</td>
</tr>
<tr>
<td>2.5</td>
<td>0.60</td>
<td>155</td>
<td>98</td>
<td>61</td>
</tr>
<tr>
<td>2.75</td>
<td>0.55</td>
<td>141</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>3.0</td>
<td>0.50</td>
<td>130</td>
<td>81</td>
<td>51</td>
</tr>
</tbody>
</table>

Table D.3 NAC Wiring Requirements for FACP with FLPS-7 Power Supply

NOTE: Calculations are based on Direct-Current Resistance data for uncoated copper wire, per National Electrical Code (2005 Edition) Table 8, Conductor Properties.

NOTE: These distances reflect the worst case scenario and are based on the current draw of the highest candela strobes at the low end of the supported NAC voltage with the entire load at the end of the circuit. Further distances can be achieved by performing a point to point voltage calculation that more accurately reflects the specific devices used and how they are dispersed on the circuit.
Appendix E: Default Programming

The following table provides a list of the programming options and their factory default settings.

<table>
<thead>
<tr>
<th>Program Option</th>
<th>Factory Default</th>
<th>Program Option</th>
<th>Factory Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone #1-10 Enabled</td>
<td>Yes</td>
<td>ANN-80 Lock Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Zone #1-10 Type</td>
<td>Pull Station</td>
<td>ANN-80 Acknowledge Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Zone #1-10 PAS Pre-Signal Enabled</td>
<td>No Delay</td>
<td>ANN-80 Silence Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Zone #1-10 Verify Enabled</td>
<td>No</td>
<td>ANN-80 Reset Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Zone #1-10 ACC Message</td>
<td>No Message Active</td>
<td>ANN-80 Drill Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Zone #1-10 Freeze Enabled</td>
<td>Yes</td>
<td>ACC All-Call Zone</td>
<td>None</td>
</tr>
<tr>
<td>Adjective</td>
<td>None</td>
<td>ANN-BUS Device 1</td>
<td>None</td>
</tr>
<tr>
<td>Noun</td>
<td>None</td>
<td>ANN-BUS Device 2</td>
<td>None</td>
</tr>
<tr>
<td>NAC #1-4 Enabled</td>
<td>Yes</td>
<td>ANN-BUS Device 3</td>
<td>None</td>
</tr>
<tr>
<td>NAC #1-4 Coding</td>
<td>Steady</td>
<td>ANN-BUS Device 4</td>
<td>None</td>
</tr>
<tr>
<td>NAC #1-4 Auto Silence</td>
<td>No</td>
<td>ANN-BUS Device 5</td>
<td>None</td>
</tr>
<tr>
<td>NAC #1-4 Silence Inhibit</td>
<td>No</td>
<td>ANN-BUS Device 6</td>
<td>None</td>
</tr>
<tr>
<td>NAC #1-4 Silenceable</td>
<td>Silenceable</td>
<td>ANN-BUS Device 7</td>
<td>None</td>
</tr>
<tr>
<td>Banner</td>
<td></td>
<td>ANN-BUS Device 8</td>
<td>None</td>
</tr>
<tr>
<td>Relay 1</td>
<td>Alarm</td>
<td>ANN-BUS Relay 1 type</td>
<td>Zone 1</td>
</tr>
<tr>
<td>Relay 2</td>
<td>Trouble</td>
<td>ANN-BUS Relay 2 type</td>
<td>Zone 2</td>
</tr>
<tr>
<td>Relay 3</td>
<td>Supervisory</td>
<td>ANN-BUS Relay 3 type</td>
<td>Zone 3</td>
</tr>
<tr>
<td>Trouble Reminder</td>
<td>No</td>
<td>ANN-BUS Relay 4 type</td>
<td>Zone 4</td>
</tr>
<tr>
<td>Canadian Option</td>
<td>No</td>
<td>ANN-BUS Relay 5 type</td>
<td>Zone 5</td>
</tr>
<tr>
<td>Charger Disable</td>
<td>No</td>
<td>ANN-BUS Relay 6 type</td>
<td>Zone 6</td>
</tr>
<tr>
<td>Factory Banner</td>
<td>Factory Banner</td>
<td>ANN-BUS Relay 7 type</td>
<td>Zone 7</td>
</tr>
<tr>
<td>PAS Timer</td>
<td>120</td>
<td>ANN-BUS Relay 8 type</td>
<td>Zone 8</td>
</tr>
<tr>
<td>Pre-Signal Timer</td>
<td>120</td>
<td>ANN-BUS Relay 9 type</td>
<td>Zone 9</td>
</tr>
<tr>
<td>AC Loss Timer</td>
<td>2</td>
<td>ANN-BUS Relay 10 type</td>
<td>Zone 10</td>
</tr>
<tr>
<td>Waterflow Delay Timer</td>
<td>0</td>
<td>Phone Line 2 Supervision</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Format</td>
<td>12 Hour</td>
<td>Primary Phone Type</td>
<td>Touchtone</td>
</tr>
<tr>
<td>Daylight Savings Enabled</td>
<td>Yes</td>
<td>Secondary Phone Type</td>
<td>Touchtone</td>
</tr>
<tr>
<td>Daylight Savings Start Week</td>
<td>Week 2</td>
<td>Central Station Reporting Enabled</td>
<td>No</td>
</tr>
<tr>
<td>Daylight Savings Start Month</td>
<td>March</td>
<td>Central Station Report Type</td>
<td>First Available</td>
</tr>
<tr>
<td>Daylight Savings End Week</td>
<td>Week 1</td>
<td>Central Station Call Limit</td>
<td>0</td>
</tr>
<tr>
<td>Daylight Savings End Month</td>
<td>November</td>
<td>Central Station Primary Test Time Interval</td>
<td>24 Hr</td>
</tr>
<tr>
<td>Printer Port Type</td>
<td>Parallel Port</td>
<td>Central Station Primary Communication Format</td>
<td>Ademco Contact ID</td>
</tr>
<tr>
<td>Printer Supervision</td>
<td>No</td>
<td>Central Station Primary Phone Number</td>
<td></td>
</tr>
<tr>
<td>Printer Baud Rate</td>
<td>N/A</td>
<td>Central Station Primary Test Time</td>
<td>1:00</td>
</tr>
<tr>
<td>Printer Parity</td>
<td>N/A</td>
<td>Central Station Primary Account Code</td>
<td>0000</td>
</tr>
<tr>
<td>Printer Data Bits</td>
<td>N/A</td>
<td>Central Station Secondary Test Time Interval</td>
<td>24 Hr</td>
</tr>
<tr>
<td>Printer Stop Bits</td>
<td>N/A</td>
<td>Central Station Secondary Communication Format</td>
<td>Ademco Contact ID</td>
</tr>
<tr>
<td>Printer Offline Timer</td>
<td>60</td>
<td>Central Station Secondary Phone Number</td>
<td></td>
</tr>
<tr>
<td>ANN-BUS Enabled</td>
<td>No</td>
<td>Central Station Secondary Test Time</td>
<td>2:00</td>
</tr>
<tr>
<td>ANN-LED Piezo Enabled</td>
<td>Yes</td>
<td>Central Station Secondary Account Code</td>
<td>0000</td>
</tr>
<tr>
<td>ANN-80 Piezo Enabled</td>
<td>Yes</td>
<td>Service Terminal Ring Count</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix F: Canadian Applications

F.1 ANN-LED Annunciator Installation for Canadian Applications

- The FACP is supplied with a modified dress panel and one ANN-LED annunciator.
- When installing and programming the FACP, the Canadian Option must be set to ON prior to any other panel programming (refer to “Canadian Option” on page 70 of the Programming Section of this manual).
- If remote indicators are desired, they must be connected to the secondary ANN-BUS circuit. This requires the use of the ANN-SEC option card.
- The installer must write in the Date of Final Assembly on the Master Marking and Warranty Label located on the FACP backbox door.
- To comply with CAN/ULC-S559-04, the ANN-RLY option must be utilized along with the configuration shown in Figure F.2.

![Diagram of Canadian FACP Configuration]

Figure F.1 Canadian FACP Configuration
Notes:
1. Relays 1 and 2 on the ANN-RLY must be programmed for latching alarm activation.
2. Relays 3 and 4 on the ANN-RLY must be programmed for non-latching trouble activation.
3. Relays 5 and 6 on the ANN-RLY must be programmed for supervisory activation with latching/non-latching set in accordance with the local AHJ.
4. The ANN-RLY must be mounted inside the FACP cabinet.
5. Refer to the ANN-RLY Document #53033 for installation instructions.

Figure F.2 Alternate Transmission for Alarm, Trouble, and Supervisory Signals
Index

Numerics

<table>
<thead>
<tr>
<th>Numerics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Zone Main Circuit Board</td>
<td>10</td>
</tr>
<tr>
<td>24 Hour Test Time</td>
<td>81</td>
</tr>
<tr>
<td>4XTMF</td>
<td>121</td>
</tr>
<tr>
<td>AC Loss Delay</td>
<td>68</td>
</tr>
<tr>
<td>AC power</td>
<td>23</td>
</tr>
<tr>
<td>AC power rating</td>
<td>13</td>
</tr>
<tr>
<td>AC power requirements</td>
<td>110</td>
</tr>
<tr>
<td>ACC audio message</td>
<td>55, 61</td>
</tr>
<tr>
<td>accessories</td>
<td>18</td>
</tr>
<tr>
<td>Account Code</td>
<td>80</td>
</tr>
<tr>
<td>ACK</td>
<td>13</td>
</tr>
<tr>
<td>Acknowledge</td>
<td>13</td>
</tr>
<tr>
<td>Acknowledge/Step</td>
<td>17, 96</td>
</tr>
<tr>
<td>Ademco</td>
<td></td>
</tr>
<tr>
<td>contact ID format</td>
<td>113</td>
</tr>
<tr>
<td>Adjective</td>
<td>62</td>
</tr>
<tr>
<td>list</td>
<td></td>
</tr>
<tr>
<td>multiple entries</td>
<td>64</td>
</tr>
<tr>
<td>Adjective/Noun</td>
<td>62</td>
</tr>
<tr>
<td>alarm</td>
<td>97</td>
</tr>
<tr>
<td>piezo pulse rate</td>
<td>17</td>
</tr>
<tr>
<td>alarm relay</td>
<td>12, 28</td>
</tr>
<tr>
<td>contact rating</td>
<td>14</td>
</tr>
<tr>
<td>Alarm Silence</td>
<td>13, 17, 96</td>
</tr>
<tr>
<td>alarm verification</td>
<td>56, 100, 101</td>
</tr>
<tr>
<td>ANN-80(C)</td>
<td>38</td>
</tr>
<tr>
<td>ANN-BUS</td>
<td>35</td>
</tr>
<tr>
<td>ANN-I/O</td>
<td></td>
</tr>
<tr>
<td>LED zone assignments</td>
<td>72</td>
</tr>
<tr>
<td>ANN-LED 45, 46, 48</td>
<td></td>
</tr>
<tr>
<td>ANN-RLY 46</td>
<td></td>
</tr>
<tr>
<td>ANN-SEC option card</td>
<td>34</td>
</tr>
<tr>
<td>applications</td>
<td>12</td>
</tr>
<tr>
<td>Autosilence</td>
<td>101</td>
</tr>
<tr>
<td>NAC</td>
<td>66</td>
</tr>
<tr>
<td>auxiliary power</td>
<td>27</td>
</tr>
<tr>
<td>Auxiliary Trouble Input</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Backbox</td>
<td></td>
</tr>
<tr>
<td>dimensions</td>
<td>18</td>
</tr>
<tr>
<td>mounting</td>
<td>21</td>
</tr>
<tr>
<td>Backup Reporting</td>
<td>77</td>
</tr>
<tr>
<td>Banner</td>
<td>67</td>
</tr>
<tr>
<td>setting</td>
<td>69</td>
</tr>
<tr>
<td>battery</td>
<td>18, 23</td>
</tr>
<tr>
<td>precautions</td>
<td>23</td>
</tr>
<tr>
<td>rating</td>
<td>13</td>
</tr>
<tr>
<td>battery box</td>
<td>18</td>
</tr>
<tr>
<td>mounting</td>
<td>22, 23</td>
</tr>
<tr>
<td>battery calculations</td>
<td>112</td>
</tr>
<tr>
<td>baud rate</td>
<td>93</td>
</tr>
<tr>
<td>BB-55F</td>
<td></td>
</tr>
<tr>
<td>see also battery box</td>
<td>18</td>
</tr>
<tr>
<td>buttons</td>
<td></td>
</tr>
<tr>
<td>see also control buttons</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>cabinet</td>
<td>21</td>
</tr>
<tr>
<td>CAC-5X</td>
<td>25</td>
</tr>
<tr>
<td>installation</td>
<td>31</td>
</tr>
<tr>
<td>call limit</td>
<td>50, 90</td>
</tr>
<tr>
<td>Canadian Applications</td>
<td>20</td>
</tr>
<tr>
<td>Canadian Option</td>
<td>67, 70</td>
</tr>
<tr>
<td>Central Station</td>
<td>75, 109</td>
</tr>
<tr>
<td>account code</td>
<td>80</td>
</tr>
<tr>
<td>communications</td>
<td>106</td>
</tr>
<tr>
<td>phone number</td>
<td>82</td>
</tr>
<tr>
<td>Phone Numbers</td>
<td>78</td>
</tr>
<tr>
<td>Central Station/Remote Station Reporting</td>
<td>119</td>
</tr>
<tr>
<td>charger capacity</td>
<td>13</td>
</tr>
<tr>
<td>Charger Disable</td>
<td>67</td>
</tr>
<tr>
<td>circuits</td>
<td>12</td>
</tr>
<tr>
<td>Class A 18, 25, 31</td>
<td></td>
</tr>
<tr>
<td>Class A Converter Module</td>
<td>18</td>
</tr>
<tr>
<td>installation</td>
<td>31</td>
</tr>
<tr>
<td>Class B 12, 13, 24</td>
<td></td>
</tr>
<tr>
<td>Clock Format</td>
<td>70</td>
</tr>
<tr>
<td>Coded Operation</td>
<td>100</td>
</tr>
<tr>
<td>coding</td>
<td></td>
</tr>
<tr>
<td>NAC 64</td>
<td></td>
</tr>
<tr>
<td>two stage operation</td>
<td>65</td>
</tr>
<tr>
<td>combination circuit</td>
<td>26</td>
</tr>
<tr>
<td>combination waterflow/supervisory requirements</td>
<td>26</td>
</tr>
<tr>
<td>requirements</td>
<td></td>
</tr>
<tr>
<td>wiring</td>
<td>26</td>
</tr>
<tr>
<td>communications format</td>
<td>83</td>
</tr>
<tr>
<td>compatibility</td>
<td></td>
</tr>
<tr>
<td>see also device compatibility</td>
<td>12</td>
</tr>
<tr>
<td>contact ID</td>
<td>113</td>
</tr>
<tr>
<td>control buttons</td>
<td>13, 96</td>
</tr>
<tr>
<td>controls</td>
<td>17</td>
</tr>
<tr>
<td>current</td>
<td></td>
</tr>
<tr>
<td>nonresettable power</td>
<td>27</td>
</tr>
<tr>
<td>resettable power</td>
<td>27</td>
</tr>
<tr>
<td>total output</td>
<td>26</td>
</tr>
<tr>
<td>current requirements for system</td>
<td>110, 111</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DACT</td>
<td></td>
</tr>
<tr>
<td>onboard</td>
<td>75</td>
</tr>
<tr>
<td>Date setting</td>
<td>70</td>
</tr>
<tr>
<td>Daylight Savings Time</td>
<td>70</td>
</tr>
<tr>
<td>Default Programming</td>
<td>127</td>
</tr>
<tr>
<td>description</td>
<td></td>
</tr>
<tr>
<td>detector label</td>
<td>63</td>
</tr>
<tr>
<td>Detector</td>
<td></td>
</tr>
<tr>
<td>adding description</td>
<td>62</td>
</tr>
<tr>
<td>enable/disable</td>
<td>54</td>
</tr>
<tr>
<td>device compatibility</td>
<td>12</td>
</tr>
<tr>
<td>dialer runaway</td>
<td>50, 90</td>
</tr>
<tr>
<td>Digital Communicator</td>
<td>19</td>
</tr>
<tr>
<td>dimensions</td>
<td></td>
</tr>
<tr>
<td>backbox</td>
<td>18</td>
</tr>
<tr>
<td>Downloading</td>
<td>108, 109</td>
</tr>
<tr>
<td>dress panel</td>
<td>12, 18</td>
</tr>
<tr>
<td>Drill 13, 17, 96</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>earth ground</td>
<td>23</td>
</tr>
<tr>
<td>edit</td>
<td></td>
</tr>
<tr>
<td>detector screens</td>
<td>53</td>
</tr>
<tr>
<td>Enable/Disable</td>
<td></td>
</tr>
<tr>
<td>zone</td>
<td>54</td>
</tr>
<tr>
<td>End-of-Line resistor</td>
<td></td>
</tr>
<tr>
<td>IDC 14, 25, 26</td>
<td></td>
</tr>
<tr>
<td>NAC 14, 27</td>
<td></td>
</tr>
<tr>
<td>Enter key</td>
<td>52</td>
</tr>
<tr>
<td>Erase History</td>
<td>92</td>
</tr>
<tr>
<td>Error Checking</td>
<td>109</td>
</tr>
<tr>
<td>event code classification</td>
<td>113</td>
</tr>
<tr>
<td>event codes</td>
<td>84</td>
</tr>
<tr>
<td>exiting</td>
<td></td>
</tr>
<tr>
<td>programming</td>
<td>51, 52</td>
</tr>
<tr>
<td>Read Status</td>
<td>51, 52</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>fail-safe</td>
<td></td>
</tr>
<tr>
<td>trouble relay</td>
<td>28</td>
</tr>
<tr>
<td>features</td>
<td>12</td>
</tr>
<tr>
<td>Form-C</td>
<td></td>
</tr>
<tr>
<td>see also relay</td>
<td>12</td>
</tr>
<tr>
<td>freeze</td>
<td>24</td>
</tr>
<tr>
<td>freeze signal</td>
<td></td>
</tr>
<tr>
<td>see also smoke detector monitoring</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>guidelines</td>
<td>35</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hazard Condition</td>
<td>99</td>
</tr>
<tr>
<td>History</td>
<td>91</td>
</tr>
<tr>
<td>erase</td>
<td>92</td>
</tr>
<tr>
<td>Maintenance Level</td>
<td>94</td>
</tr>
<tr>
<td>view events</td>
<td>91</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>13 detectors</td>
<td>24</td>
</tr>
<tr>
<td>IDC 12, 13, 24</td>
<td></td>
</tr>
<tr>
<td>alarm current</td>
<td>14</td>
</tr>
<tr>
<td>compatibility</td>
<td>24</td>
</tr>
<tr>
<td>End-of-Line resistor</td>
<td>26</td>
</tr>
<tr>
<td>End-of-Line resistor 14, 25</td>
<td></td>
</tr>
<tr>
<td>maximum loop resistance</td>
<td>14, 24</td>
</tr>
<tr>
<td>short circuit current</td>
<td>14</td>
</tr>
<tr>
<td>standby current</td>
<td>14</td>
</tr>
<tr>
<td>wiring</td>
<td>25</td>
</tr>
<tr>
<td>indicators</td>
<td>17</td>
</tr>
<tr>
<td>see also LED</td>
<td>13</td>
</tr>
<tr>
<td>Initiating Device Circuit</td>
<td>12, 13, 24</td>
</tr>
</tbody>
</table>

MS-5UD & MS-10UD Series Manual — P/N 52626:C7 6/12/2018
Class A 31
In-Line resistor
 IDC combination circuit 26
Input Zones 53, 102
installation 21
 CAC-5X 31
Class A Converter Module 31
 option modules 31
 Transmitter Module 32, 33

J
J4 and J5
 option module connectors 32
JP30 jumper
 placement supervision 32

K
Key Panel 17
 function keys 17
 service/program keys 17

L
 lamp test 17
 LCD display 13, 17
LED 13, 17
 AC Power 13, 17, 96
 Alarm Silence 13, 17
 Alarm Silence 96
 Fire Alarm 13, 17, 96
 Supervisory 13, 17, 96
 System Trouble 17
 Trouble 13, 96
Local Programming 50

M
 main circuit board
 see also 10 Zone main circuit board 10
 see also 5 Zone main circuit board 9
 see also MS-10UD 10
 maintenance 24
 piezo pulse rate 17
 Maintenance Alert 99
 Maintenance Program Level 2 52, 94
 maintenance signal
 see also smoke detector monitoring 12
 Manual programming 50
 Master Program Level 1 52, 53
 Medical Alert 99
 Mode key 52
 mounting
 cabinet 21
 main circuit board 21
 municipal box 33
 municipal box transmitter
 see also Transmitter module 18

N
NAC 12, 14, 64
 Auto Silence 66
 coded 100
 coding 64
 current 26
 enable/disable 64
 End-of-Line resistor 14, 27
 maximum current 14
 silence inhibit 66
 silenceable 66
 synchronized 65
 wiring 27
 NFPA 72 Auxiliary Fire Alarm System 118, 120
 NFPA 72 Central Station Service (Protected Premises Unit) or Remote Station Service 118
 NFPA 72 Proprietary Fire Alarm System 118
 NFPA 72 Proprietary Protective Signaling System 122
 NFPA 72 Remote Station Protective Signaling System 121
 NFPA Standard 118
 nonpower-limited wiring 29
 nonresettable power 12, 14, 27
 current 27
 maximum current 14
 Normal 96
 normal display 50
 Notification Appliance Circuit 12, 14, 26, 64
 Class A 31
 Noun
 list 62
 multiple entries 64
 Operating Instructions 96
 Operation
 alarm 97
 disable/enable 99
 hazard condition 99
 medical alert 99
 normal 96
 process monitor 98
 supervisory 98
 trouble 97
 waterfall 99
 Option Modules
 Printer/PC 93
 option modules 18, 71
 installation 31, 32

P
PAS 100
 see also Positive Alarm Sequence 59
 PAS timer 67
 Password 52
 change 93
 Maintenance Level 2 52, 94
 Master Level 1 52
 Phone Number 82
 piezo 17
 alarm 17
 maintenance 17
 see also sounder 13
 supervisory 17
 trouble 17
 polarity reversal circuit
 see also Transmitter module 33
 Positive Alarm Sequence 59, 100
 power 14, 23, 27
 primary 23
 secondary
 see also battery 23
 power supply calculations 110
 power-limited wiring 29
 Power-up
 first time 52
 Pre-signal 58
 function 100
 Pre-signal Delay timer 68
 Pre-signal timer 67
 Primary Phone 75
 printer
 baud rate 93
 printer connection 41
 printer module
 installation 41
 printer options 41
 Process Monitor 98
 Program
 clear 92
 program keys
 see also Key Panel 17
 Programming 50
 autoprogramming 50
 exiting 51
 factory default 127
 Level 1 52
 Level 2 52
 manual 50
 Master Level 1 53
 Programming Levels 52
 Programming Screens 52
 Proprietary Yes
 see also Remote Upload 108
 PS-Tools 19, 108

R
Read Status 50, 102
 annunciators 104
 exiting 51
 history 103
 input zones 102
 NAC 102
 Print 103
 relay 103
 Real-Time Clock 100
 Recall/Increment Function 64
 Receivers 107
 relay 12, 17, 28, 67
 contact rating 14, 28
 Form-C 67
 programming 67
 Remote Download 108
 Remote Programming 50
 remote station service 33
 REN

Index
Index

see also Ringer Equivalence Number 19
Reporting Enable 76
Reset 13, 17, 96
resettable power 12, 14, 27
current 27
maximum current 14
reverse polarity circuit
see also Transmitter module 18
Ring Count 91
Ringer Equivalence Number 19
ROME Series 47
rules for ANN-BUS wiring 35

S
secondary ANN-BUS 34
Secondary Phone 75
Secret Code 109
Security Features 109
Service Terminal 90
Silence Inhibit 66, 100
Silenceable
 NAC 66
silenceable circuits
 synchronized signals 66
sounder 13, 17
strobos 13, 66
Style B 13, 24
 see also Class B 12
Style D 18, 25, 31
Style Y 14
 see also Class B 12
Style Z 18, 31
subscreen 52
supervision
 Transmitter option module placement 32
supervisory 12, 98
 piezo pulse rate 17
supervisory relay 28
 contact rating 14
synchronization 65
synchronized 65
synchronized signals 65
 and silenceable circuits 66
system current calculations 110
System Setup 67

T
Telephone Circuitry 19
Telephone Company
 Rights and Warnings 19
telephone line 30
Terminal 91
Test Time Interval 79, 81
Time setting 69
Time-Date
 Maintenance Level 95
Time-Date setting 67, 69
Time-out 109
Timers 67
Transmittal Priorities 106
transmitter module 18, 33
operation 33
specifications 33
Transmitter option module
 placement supervision 32
Trouble 97
trouble
 piezo pulse rate 17
trouble call limit 50, 90
Trouble Input
 Auxiliary 14
 trouble relay 12, 28
 contact rating 14
 fail-safe 28
Trouble Reminder 67, 101
two stage operation 65
Type
 zone 55

U
UL
 wiring requirements 29
Upload/Download 108

V
Verification
 zone 56
View Events 91

W
Walktest 92
 audible 92
 Maintenance Level 95
 operation 101
 silent 92
Waterflow Delay timer 67, 68
Waterflow Retard Timer 101
Wire Requirements 125
wiring
 CAC-5X 31
 Class A Converter Module 31
 Class A IDC 32
 Class A NAC 32
 combination waterflow/supervisory 26
 IDC 25
 NAC 27
 nonpower-limited 29
 power-limited 29
 UL requirements 29

Z
Zone
 type 55
 verification 56
Zone Setup
 Maintenance Level 94
NORMAL - Only AC POWER is illuminated green. All other indicators are off. LCD display will read SYSTEM ALL NORMAL.

PANEL KEY - The key to open the panel can be found at the following location:

WHEN AUDIBLE DEVICES ARE SOUNDING -

FOR AN ALARM
1. Evacuate the protected area
2. Notify the monitoring service and/or the Fire Department immediately. Tell them briefly what happened and what your current status is.

 Phones: ______________________ Fire Department ______________________ Monitoring Service
3. If the Fire Department is responding, be prepared to provide directions to arriving firefighters.

FOR TROUBLE, SUPERVISORY, AND EMERGENCY ALARMS
1. Notify the monitoring service and/or applicable first responders if this panel is connected to either one, and tell them what is happening.
2. Silence audible devices by unlocking and opening the panel and pressing the ACKNOWLEDGE/STEP button. The applicable indicator will remain illuminated. Contact authorized service personnel immediately! (See Below).

WARNING!
DO NOT ALLOW TROUBLE CONDITIONS TO REMAIN LOGGED IN THE SYSTEM. THE PROTECTION THE SYSTEM OFFERS HAS BEEN COMPROMISED OR ELIMINATED, WHEN A TROUBLE CONDITION EXISTS.

To return to normal after an alarm
1. Do not enter the protected area until safe to do so.
2. Clear all initiating devices. Smoke detectors will not reset if there is still smoke in the area.
3. Reset the control panel (PRESS the RESET button)

Power failure or brownout
If AC power drops too low or fails, AC POWER indicator will extinguish, the system TROUBLE indicator will turn on yellow, and the panel buzzer and any other audible trouble devices will sound. Contact authorized service personnel immediately. See below.

Manual activation (Fire Drill or otherwise)
Notification Appliance Circuits (NACs) can be activated by pressing and holding the DRILL button for at least two seconds.

NOTE: You may want to disconnect the municipal box by sliding the DISCONNECT switch, located on the 4XTMF module, to its disconnect position (to the right). If a DACT is connected, notify the monitoring service before conducting any fire drills or tests.

Alarm Silencing
Notification Appliance Circuits may be silenced by pressing the ALARM SILENCE button. ALARM SILENCED will turn on yellow. Subsequent alarms will reactivate circuits. Press the RESET button to clear the "silenced" condition.

NOTE: Notification Appliance Circuits may be programmed as nonsilenceable. Also, Signal Silence Inhibit, if enabled, will prevent silencing of NACs for one minute after an alarm (see manual).

To test the indicators, LCD display and piezo
Press and release the RESET button and check all indicators/LEDs. Every indicator/LED should be on, LCD shows all pixels on, piezo sounder beeps.

For more information, refer to the MS-5UD & MS-10UD Series Manual, Document #52626. It is kept in the following location:

THIS SHEET SHALL BE FRAMED ADJACENT TO THE CONTROL PANEL

Document #52805 Rev. B 2/7/2011 ECN 10-008
Manufacturer Warranties and Limitation of Liability

Manufacturer Warranties. Subject to the limitations set forth herein, Manufacturer warrants that the Products manufactured by it in its Northford, Connecticut facility and sold by it to its authorized Distributors shall be free, under normal use and service, from defects in material and workmanship for a period of thirty six months (36) months from the date of manufacture (effective Jan. 1, 2009). The Products manufactured and sold by Manufacturer are date stamped at the time of production. Manufacturer does not warrant Products that are not manufactured by it in its Northford, Connecticut facility but assigns to its Distributor, to the extent possible, any warranty offered by the manufacturer of such product. This warranty shall be void if a Product is altered, serviced or repaired by anyone other than Manufacturer or its authorized Distributors. This warranty shall also be void if there is a failure to maintain the Products and the systems in which they operate in proper working conditions.

MANUFACTURER MAKES NO FURTHER WARRANTIES, AND DISCLAIMS ANY AND ALL OTHER WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, TRADEMARKS, PROGRAMS AND SERVICES RENDERED BY MANUFACTURER INCLUDING WITHOUT LIMITATION, INFRINGEMENT, TITLE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. MANUFACTURER SHALL NOT BE LIABLE FOR ANY PERSONAL INJURY OR DEATH WHICH MAY ARISE IN THE COURSE OF, OR AS A RESULT OF, PERSONAL, COMMERCIAL OR INDUSTRIAL USES OF ITS PRODUCTS.

This document constitutes the only warranty made by Manufacturer with respect to its products and replaces all previous warranties and is the only warranty made by Manufacturer. No increase or alteration, written or verbal, of the obligation of this warranty is authorized. Manufacturer does not represent that its products will prevent any loss by fire or otherwise.

Warranty Claims. Manufacturer shall replace or repair, at Manufacturer's discretion, each part returned by its authorized Distributor and acknowledged by Manufacturer to be defective, provided that such part shall have been returned to Manufacturer with all charges prepaid and the authorized Distributor has completed Manufacturer's Return Material Authorization form. The replacement part shall come from Manufacturer's stock and may be new or refurbished. THE FOREGOING IS DISTRIBUTOR'S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A WARRANTY CLAIM.