Addressable Fire Alarm Control Panel
MS-9200UDLS
MS-9200UDLSE
MS-9200UDLSC
Manual
Fire Alarm & Emergency Communication System Limitations

While a life safety system may lower insurance rates, it is not a substitute for life and property insurance!

An automatic fire alarm system—typically made up of smoke detectors, heat detectors, manual pull stations, audible warning devices, and a fire alarm control panel (FACP) with remote notification capability—can provide early warning of a developing fire. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire.

An emergency communication system—typically made up of an automatic fire alarm system (as described above) and a life safety communication system that may include an autonomous control unit (ACU), local operating console (LOC), voice communication, and other various interoperable communication methods—can broadcast a mass notification message. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire or life safety event.

The Manufacturer recommends that smoke and/or heat detectors be located throughout a protected premises following the recommendations of the current edition of the National Fire Protection Association Standard 72 (NFPA 72), manufacturer's recommendations, State and local codes, and the recommendations contained in the Guide for Proper Use of System Smoke Detectors, which is made available at no charge to all installing dealers. This document can be found at http://www.systemsensor.com/appguides/. A study by the Federal Protection Association Standard 72 (NFPA 72), manufacturer's recommendations, State and local codes, and the recommendations contained in the Guide for Proper Use of System Smoke Detectors, which is made available at no charge to all installing dealers. This document can be found at http://www.systemsensor.com/appguides/. A study by the Federal Emergency Management Agency (an agency of the United States government) indicated that smoke detectors may not go off in as many as 35% of all fires. While fire alarm systems are designed to provide early warning against fire, they do not guarantee warning or protection against fire. A fire alarm system may not provide timely or adequate warning, or simply may not function, for a variety of reasons:

Smoke detectors may not sense fire where smoke cannot reach the detectors such as in chimneys, in or behind walls, on roofs, or on the other side of closed doors. Smoke detectors also may not sense a fire on another level or floor of a building. A second-floor detector, for example, may not sense a first-floor or basement fire.

Particles of combustion or “smoke” from a developing fire may not reach the sensing chambers of smoke detectors because:

- Barriers such as closed or partially closed doors, walls, chimneys, even wet or humid areas may inhibit particle or smoke flow.
- Smoke particles may become “cold,” stratify, and not reach the ceiling or upper walls where detectors are located.
- Smoke particles may be blown away from detectors by air outlets, such as air conditioning vents.
- Smoke particles may be drawn into air returns before reaching the detector.

The amount of “smoke” present may be insufficient to alarm smoke detectors. Smoke detectors are designed to alarm at various levels of smoke density. If such density levels are not created by a developing fire at the location of detectors, the detectors will not go into alarm.

Smoke detectors, even when working properly, have sensing limitations. Detectors that have photoelectric sensing chambers tend to detect smoldering fires better than flaming fires, which have little visible smoke. Detectors that have ionizing-type sensing chambers tend to detect fast-flaming fires better than smoldering fires. Because fires develop in different ways and are often unpredictable in their growth, neither type of detector is necessarily best and a given type of detector may not provide adequate warning of a fire.

Smoke detectors cannot be expected to provide adequate warning of fires caused by arson, children playing with matches (especially in bedrooms), smoking in bed, and violent explosions (caused by escaping gas, improper storage of flammable materials, etc.).

Heat detectors do not sense particles of combustion and alarm only when heat on their sensors increases at a predetermined rate or reaches a predetermined level. Rate-of-rise heat detectors may be subject to reduced sensitivity over time. For this reason, the rate-of-rise feature of each detector should be tested at least once per year by a qualified fire protection specialist. Heat detectors are designed to protect property, not life.

IMPORTANT! Smoke detectors must be installed in the same room as the control panel and in rooms used by the system for the connection of alarm transmission wiring, communications, signaling, and/or power. If detectors are not so located, a developing fire may damage the alarm system, compromising its ability to report a fire.

Audible warning devices such as bells, horns, strobes, speakers and displays may not alert people if these devices are located on the other side of closed or partly open doors or are located on another floor of a building. Any warning device may fail to alert people with a disability or those who have recently consumed drugs, alcohol, or medication. Please note that:

- An emergency communication system may take priority over a fire alarm system in the event of a life safety emergency.
- Voice messaging systems must be designed to meet intelligibility requirements as defined by NFPA, local codes, and Authorities Having Jurisdiction (AHJ).
- Language and instructional requirements must be clearly disseminated on any local displays.
- Strobes can, under certain circumstances, cause seizures in people with conditions such as epilepsy.
- Studies have shown that certain people, even when they hear a fire alarm signal, do not respond to or comprehend the meaning of the signal. Audible devices, such as horns and bells, can have different tonal patterns and frequencies. It is the property owner's responsibility to conduct fire drills and other training exercises to make people aware of fire alarm signals and instruct them on the proper reaction to alarm signals.
- In rare instances, the sounding of a warning device can cause temporary or permanent hearing loss.

A life safety system will not operate without any electrical power. If AC power fails, the system will operate from standby batteries only for a specified time and only if the batteries have been properly maintained and replaced regularly.

Equipment used in the system may not be technically compatible with the control panel. It is essential to use only equipment listed for service with your control panel.

Telephone lines needed to transmit alarm signals from a premises to a central monitoring station may be out of service or temporarily disabled. For added protection against telephone line failure, backup radio transmission systems are recommended.

The most common cause of life safety system malfunction is inadequate maintenance. To keep the entire life safety system in excellent working order, ongoing maintenance is required per the manufacturer's recommendations, and UL and NFPA standards. At a minimum, the requirements of NFPA 72 shall be followed. Environment with large amounts of dust, dirt, or high air velocity require more frequent maintenance. A maintenance agreement should be arranged through the local manufacturer's representative. Maintenance should be scheduled monthly or as required by National and/or local fire codes and should be performed by authorized professional life safety system installers only. Adequate written records of all inspections should be kept.
Installation Precautions

Adherence to the following will aid in problem-free installation with long-term reliability:

WARNING - Several different sources of power can be connected to the fire alarm control panel. Disconnect all sources of power before servicing. Control unit and associated equipment may be damaged by removing and/or inserting cards, modules, or interconnecting cables while the unit is energized. Do not attempt to install, service, or operate this unit until manuals are read and understood.

CAUTION - System Re-acceptance Test after Software Changes: To ensure proper system operation, this product must be tested in accordance with NFPA 72 after any programming operation or change in site-specific software. Re-acceptance testing is required after any change, addition or deletion of system components, or after any modification, repair or adjustment to system hardware or wiring. All components, circuits, system operations, or software functions known to be affected by a change must be 100% tested. In addition, to ensure that other operations are not inadvertently affected, at least 10% of initiating devices that are not directly affected by the change, up to a maximum of 50 devices, must also be tested and proper system operation verified.

This system meets NFPA requirements for operation at 0-49°C C/32-120°F and at a relative humidity 93% ± 2% RH (non-condensing) at 32°C ± 2°C (90°F ± 3°F). However, the useful life of the system's standby batteries and the electronic components may be adversely affected by extreme temperature ranges and humidity. Therefore, it is recommended that this system and its peripherals be installed in an environment with a normal room temperature of 15-27°C C/60-80°F.

Verify that wire sizes are adequate for all initiating and indicating device loops. Most devices cannot tolerate more than a 10% I.R. drop from the specified device voltage.

Like all solid state electronic devices, this system may operate erratically or can be damaged when subjected to lightning induced transients. Although no system is completely immune from lightning transients and interference, proper grounding will reduce susceptibility. Overhead or outside aerial wiring is not recommended, due to an increased susceptibility to nearby lightning strikes. Consult with the Technical Services Department if any problems are anticipated or encountered.

Disconnect AC power and batteries prior to removing or inserting circuit boards. Failure to do so can damage circuits.

Remove all electronic assemblies prior to any drilling, filing, reaming, or punching of the enclosure. When possible, make all cable entries from the sides or rear. Before making modifications, verify that they will not interfere with battery, transformer, or printed circuit board location.

Do not tighten screw terminals more than 9 in-lbs. Over-tightening may damage threads, resulting in reduced terminal contact pressure and difficulty with screw terminal removal.

This system contains static-sensitive components. Always ground yourself with a proper wrist strap before handling any circuits so that static charges are removed from the body. Use static suppressive packaging to protect electronic assemblies removed from the unit.

Follow the instructions in the installation, operating, and programming manuals. These instructions must be followed to avoid damage to the control panel and associated equipment. FACP operation and reliability depend upon proper installation.

Preca-D1-9-2005

FCC Warning

WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause interference to radio communications. It has been tested and found to comply with the limits for class A computing devices pursuant to Subpart B of Part 15 of FCC Rules, which is designed to provide reasonable protection against such interference when devices are operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user will be required to correct the interference at his or her own expense.

Canadian Requirements

This digital apparatus does not exceed the Class A limits for radiation noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le present appareil numerique n'emet pas de bruits radioelectriques depassant les limites applicables aux appareils numeriques de la classe A prescrites dans le Reglement sur le brouillage radioelectrique edicte par le ministere des Communications du Canada.

LiteSpeed™, Lite-Connect™, and SWIFT™ are trademarks; and Fire-Lite® Alarms is a registered trademark of Honeywell International Inc. Microsoft® and Windows® are registered trademarks of the Microsoft Corporation. The Chrome™ browser is a trademark of Google Inc. ©2015 by Honeywell International Inc. All rights reserved. Unauthorized use of this document is strictly prohibited.
Software Downloads
In order to supply the latest features and functionality in fire alarm and life safety technology to our customers, we make frequent upgrades to the embedded software in our products. To ensure that you are installing and programming the latest features, we strongly recommend that you download the most current version of software for each product prior to commissioning any system. Contact Technical Support with any questions about software and the appropriate version for a specific application.

Documentation Feedback
Your feedback helps us keep our documentation up-to-date and accurate. If you have any comments or suggestions about our online Help or printed manuals, you can email us.

Please include the following information:

• Product name and version number (if applicable)
• Printed manual or online Help
• Topic Title (for online Help)
• Page number (for printed manual)
• Brief description of content you think should be improved or corrected
• Your suggestion for how to correct/improve documentation

Send email messages to:

FireSystems.TechPubs@honeywell.com

Please note this email address is for documentation feedback only. If you have any technical issues, please contact Technical Services.
Table of Contents

Section 1: Product Description .. 13
 1.1: Features and Options ...13
 1.2: Specifications ..15
 1.3: Controls and Indicators ...17
 1.4: Digital Alarm Communicator/Transmitter ..18
 1.5: Components ...18
 1.5.1: Intelligent Addressable Detectors: Newer Series ..19
 1.5.2: Intelligent Addressable Modules: Newer Series ..19
 1.5.3: 300 Series Intelligent Addressable Devices ..20
 1.5.4: Addressable Device Accessories ..20
 End-of-Line Resistor Assembly ..20
 Power Supervision Relay ..20
 EOL-C(R/W) Mounting Plate ...20
 1.6: Optional Modules ...20
 1.7: Accessories ...20
 1.7.1: PS-Tools Programming Utility ..20
 1.7.2: DP-9692 Dress Panel ..21
 1.7.3: Trim Ring ..21
 1.7.4: Multi-Module Mounting Bracket ...21
 1.7.5: Battery Box ...21
 BB-26 ...21
 BB-55F ..21
 1.7.6: Battery Charger ...22
 CHG-75 Battery Charger ...22
 CHG-120F Battery Charger ...22
 1.7.7: IPDACT Internet Protocol DACT ...22
 1.7.8: ECC-50/100 ...22
 1.7.9: ECC-FFT ..22
 1.7.10: W-GATE Wireless Gateway ..22
 1.7.11: ANN-BUS Annunciators/Modules ..23
 Guidelines ..23
 ANN-80 Remote Fire Annunciator ...23
 ANN-S/PG Serial/Parallel Interface Module ..24
 ANN-I/O LED Driver Module ...24
 ANN-LED Annunciator Module ..24
 ANN-RLY Annunciator Module ..24
 ANN-LC Lite-Connect Module ...24
 1.7.12: Legacy ACS Series LED Zone Type Annunciators ...24
 LCD-80F/LCD-80FC Remote Fire Annunciator/Indicator ..25
 LDM Series Lamp Driver Modules (Graphic Annunciator) ...25
 Legacy ACM-8RF Relay Control Module ..25
 1.8: Getting Started ..25
 1.9: Telephone Requirements and Warnings ...25
 1.9.1: Telephone Circuitry ..25
 1.9.2: Digital Communicator ...26
 1.9.3: Telephone Company Rights and Warnings ..26
 1.9.4: For Canadian Applications ..27

Section 2: Installation ...28
 2.1: Mounting the Backbox ...28
 2.2: Mounting Optional Transformer/Remounting Chassis ...29
 2.3: Power ..32
 2.3.1: AC Power and Earth Ground Connection ..32
 2.3.2: Battery Power ...33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.3: Zone Setup</td>
<td>88</td>
</tr>
<tr>
<td>Enable</td>
<td>88</td>
</tr>
<tr>
<td>Disable</td>
<td>88</td>
</tr>
<tr>
<td>Zone 97, 98 and 99</td>
<td>88</td>
</tr>
<tr>
<td>Zones Installed</td>
<td>89</td>
</tr>
<tr>
<td>Zones Enabled</td>
<td>89</td>
</tr>
<tr>
<td>Zones Disabled</td>
<td>89</td>
</tr>
<tr>
<td>Zone Type</td>
<td>90</td>
</tr>
<tr>
<td>Zones Available</td>
<td>90</td>
</tr>
<tr>
<td>Zone Message</td>
<td>91</td>
</tr>
<tr>
<td>3.6.4: Loop Setup</td>
<td>91</td>
</tr>
<tr>
<td>Style</td>
<td>91</td>
</tr>
<tr>
<td>Loop Protocol</td>
<td>91</td>
</tr>
<tr>
<td>Device Addressing</td>
<td>92</td>
</tr>
<tr>
<td>3.6.5: System Setup</td>
<td>92</td>
</tr>
<tr>
<td>Trouble Reminder</td>
<td>93</td>
</tr>
<tr>
<td>Banner</td>
<td>93</td>
</tr>
<tr>
<td>Time-Date</td>
<td>94</td>
</tr>
<tr>
<td>Timers</td>
<td>95</td>
</tr>
<tr>
<td>NAC (Notification Appliance Circuit)</td>
<td>97</td>
</tr>
<tr>
<td>Relays</td>
<td>101</td>
</tr>
<tr>
<td>Canadian Option</td>
<td>101</td>
</tr>
<tr>
<td>Waterflow Silenceable</td>
<td>102</td>
</tr>
<tr>
<td>MNS Override</td>
<td>102</td>
</tr>
<tr>
<td>Lite-Connect</td>
<td>102</td>
</tr>
<tr>
<td>3.6.6: Verify Loop</td>
<td>103</td>
</tr>
<tr>
<td>3.6.7: History</td>
<td>103</td>
</tr>
<tr>
<td>View Events</td>
<td>103</td>
</tr>
<tr>
<td>Erase History</td>
<td>104</td>
</tr>
<tr>
<td>3.6.8: Walktest</td>
<td>104</td>
</tr>
<tr>
<td>3.6.9: Option Modules</td>
<td>105</td>
</tr>
<tr>
<td>Annunciators</td>
<td>106</td>
</tr>
<tr>
<td>ANN-I/O Options</td>
<td>109</td>
</tr>
<tr>
<td>Onboard DACT</td>
<td>119</td>
</tr>
<tr>
<td>Central Station Primary and Secondary Phone Numbers</td>
<td>121</td>
</tr>
<tr>
<td>Test Time Interval</td>
<td>121</td>
</tr>
<tr>
<td>Account Code</td>
<td>122</td>
</tr>
<tr>
<td>24 Hour Test Time</td>
<td>122</td>
</tr>
<tr>
<td>Phone Number</td>
<td>122</td>
</tr>
<tr>
<td>Communication Format</td>
<td>122</td>
</tr>
<tr>
<td>Event Codes</td>
<td>123</td>
</tr>
<tr>
<td>Ademco Contact ID & SIA Formats</td>
<td>123</td>
</tr>
<tr>
<td>Report Style</td>
<td>125</td>
</tr>
<tr>
<td>Printer/PC</td>
<td>126</td>
</tr>
<tr>
<td>3.6.10: Password Change</td>
<td>126</td>
</tr>
<tr>
<td>3.6.11: Clear Program</td>
<td>127</td>
</tr>
<tr>
<td>3.6.12: Program Check</td>
<td>127</td>
</tr>
<tr>
<td>3.7: Maintenance Program Check</td>
<td>128</td>
</tr>
<tr>
<td>3.7.1: Disable Point</td>
<td>129</td>
</tr>
</tbody>
</table>
Section 4: Operating Instructions

4.1: Panel Control Buttons
 4.1.1: Acknowledge/Step
 4.1.2: Alarm Silence
 4.1.3: Drill/Hold 2 Sec
 4.1.4: Reset

4.2: LED Indicators

4.3: Normal Operation

4.4: Trouble Operation

4.5: Alarm Operation

4.6: Supervisory Operation

4.7: Process Monitor Operation

4.8: Hazard/Tornado Condition Operation

4.9: Medical Alert Condition Operation

4.10: Mass Notification Operation

4.11: NAC Operation

4.12: Programmed Zone Operation

4.13: Disable/Enable Operation

4.14: Waterflow Circuits Operation

4.15: Detector Functions

4.16: Time Functions: Real-Time Clock

4.17: Synchronized NAC Operation

4.18: Coded Operation

4.19: Presignal

4.20: Positive Alarm Sequence

4.21: Special System Timers
 4.21.1: Silence Inhibit Timer
 4.21.2: Autosilence Timer
 4.21.3: Trouble Reminder
 4.21.4: Waterflow Retard Timer
 4.21.5: Alarm Verification (None or One Minute)

4.22: Walktest

4.23: Read Status
 4.23.1: System Point
 4.23.2: Zones
 4.23.3: Power
 4.23.4: Trouble Reminder
 4.23.5: Timers
 4.23.6: NAC
 4.23.7: Relays
 4.23.8: Program Check
 4.23.9: History
 4.23.10: Annunciators
 4.23.11: Phone Line
 4.23.12: Central Station
 4.23.13: Service Terminal
 4.23.14: Printer/PC
 4.23.15: Print
 4.23.16: Chamber Value
 4.23.17: Maintenance Alert

Drift Compensation
It is imperative that the installer understand the requirements of the Authority Having Jurisdiction (AHJ) and be familiar with the standards set forth by the following regulatory agencies:

- Underwriters Laboratories/Underwriters Laboratories Canada
- National Fire Protection Association

Before proceeding, the installer should be familiar with the following documents.

NFPA Standards

NFPA 72 National Fire Alarm Code
NFPA 70 National Electrical Code

Underwriters Laboratories Documents:

- UL 38 Manually Actuated Signaling Boxes
- UL 217 Smoke Detectors, Single and Multiple Station
- UL 228 Door Closers–Holders for Fire Protective Signaling Systems
- UL 268 Smoke Detectors for Fire Protective Signaling Systems
- UL 268A Smoke Detectors for Duct Applications
- UL 346 Waterflow Indicators for Fire Protective Signaling Systems
- UL 464 Audible Signaling Appliances
- UL 521 Heat Detectors for Fire Protective Signaling Systems
- UL 864 Standard for Control Units for Fire Protective Signaling Systems
- UL 1481 Power Supplies for Fire Protective Signaling Systems
- UL 1610 Central Station Burglar Alarm Units
- UL 1638 Visual Signaling Appliances
- UL 1971 Signaling Devices for Hearing Impaired
- UL 2017 General-Purpose Signaling Devices and Systems
- UL 2572 Communication and Control Units for Mass Notification Systems

CAN/ULC - S Standards

- CAN/ULC - S524-01 Standard for Installation of Fire Alarm Systems
- CAN/ULC - S559-04 Equipment for Fire Signal Receiving Centers and Systems
- CAN/ULC - S561-03 Installation and Services for Fire Signal Receiving Centers and Systems
- CAN/ULC - S527-99 Standard for Control Units for Fire Alarm Systems

This Class (A) digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe (A) est conforme à la norme NMB-003 du Canada.

Other:

- Canadian Electrical Code, Part I
- EIA-232E Serial Interface Standard
- EIA-485 Serial Interface Standard
- NEC Article 250 Grounding
- NEC Article 300 Wiring Methods
- NEC Article 760 Fire Protective Signaling Systems
- Applicable Local and State Building Codes
- Requirements of the Local Authority Having Jurisdiction (LAHJ)

Fire-Lite Documents:

- Fire-Lite Device Compatibility Document #15384
- SLC Wiring Manual Document #51309
- ECC-50/100 Manual Document #LS10001-000FL-E
- ECC-FFT Manual Document #LS10031-000FL-E
- ACS Series Annunciators Document #51480
- CHG-120F Battery Charger Document #50888
- CHG-75 Battery Charger Document #51315
- LDM Series Lamp Driver Modules Document #50055
- LCD-80F Remote Fire Annunciator Document #50055
- ACM-8RF Relay Control Module Document #50362
- IPDACT Communicator/Transmitter Document #53109
- ANN-80 Product Installation Document Document #52749
- ANN-(R)LED Product Installation Doc. Document #50055
- ANN-I/O Product Installation Document Document #151416
- ANN-RLY Product Installation Document Document #50055
- ANN-S/PG Product Installation Document Document #151417
- ANN-LC Product Installation Document Document #LS10158-000FL-E
- ACC-25/50(ZS/T) Manual Document #51889

This product has been certified to comply with the requirements in the Standard for Control Units and Accessories for Fire Alarm Systems, UL 864, 9th Edition. Operation of this product with products not tested for UL 864, 9th Edition has not been evaluated. Such operation requires the approval of the local Authority Having Jurisdiction (AHJ).
Peripheral Devices and Their Documents:

- ANN Audio Control for ECC-50/100 Doc. #LS10001-000FL-E or ACC-25/50(ZS/T) Doc. #51889
- ANN-LC
 Lite-Connect module
 Doc. #LS10158-000FL-E
- ANN-BUS - TB9/TB8
- PH15 & PH16 Telephone Connections
- J5 & J6
- 4XTMF
 Reverse Polarity Module
- SLC Loop - TB10
- Addressable Devices and SLC Wiring Doc. #51309
 Wireless Gateway Doc. #LS10036-000FL-E
- Battery Connector - J9
- CHG-120F Charger
 Doc. #50888
- CHG-75 Charger
 Doc. #51315
- ANN-80(C)
 LCD Text
 Annunciator/Indicator
 Doc. #52749
- ANN-RLY
 10 Form-C
 Relay Card
 Doc. #53033
- ANN-I/O
 LED Driver
 Doc. #151416
- ANN-(R)LED
 LED Display
 Doc. #53032
- IPDACT
 Internet
 Communicator
 Doc. #53109
- ANN-LC
 Lite-Connect module
 Doc. #LS10158-000FL-E
- ANN-I/O
 LED Driver
 Doc. #151416
- ANN-(R)LED
 LED Display
 Doc. #53032
- ANN-LC
 Lite-Connect module
 Doc. #LS10158-000FL-E
- CHG-120F Charger
 Doc. #50888
- CHG-75 Charger
 Doc. #51315
Section 1: Product Description

The Fire-Lite MS-9200UDLS is a combination FACP (Fire Alarm Control Panel) and DACT (Digital Alarm Communicator/Transmitter) all on one circuit board. This compact, cost effective, intelligent addressable control panel has an extensive list of powerful features. The combination of Fire-Lite’s newer series devices and legacy 300 Series devices, along with the MS-9200UDLS FACP, offer the latest in fire protection technology. The power supply and all electronics are contained on a single circuit board housed in a metal cabinet, providing a complete fire control system for most applications. Optional modules, which plug into the main circuit board, are available for special functions. Available accessories include LED, graphic and LCD annunciators, reverse polarity/city box transmitter, local and remote upload/download software and remote power expansion.

The integral DACT transmits system status (alarms, troubles, AC loss, etc.) to a Central Station via the public switched telephone network. It also allows remote programming or interrogation of the control panel using the PS-Tools Upload/Download utility via the public switched telephone network. Local programming and interrogation is also possible using the PS-Tools and the USB port (J12) on the FACP. Any personal computer with WINDOWS® XP or greater, and compatible modem with a speed of 2400 baud or faster and PS-Tools software may serve as a Service Terminal. This allows download of the entire program or upload of the entire program, history file, walk-test data, current status and system voltages.

Inventory

When MS-9200UDLS shipment is received, check that all parts have been included in shipment. The MS-9200UDLS shipment consists of one of each of the following:

- ✔ main circuit board with display
- ✔ backbox with door
- ✔ plastic bag containing screws, cables, key, etc.
- ✔ manual

1.1 Features and Options

- Automated activation of the ECC-50/100 Emergency Command Center
- ECC-FFT Firefighter Telephone option
- LiteSpeed™ polling protocol for faster SLC response time
- SLC operates up to 10,000 ft. (3,000 m) in LiteSpeed mode with twisted, unshielded wire (refer to “Wire Requirements” on page 178)
- Built-in DACT (Digital Alarm Communicator/Transmitter)
- Single addressable SLC loop which meets NFPA Style 4, 6 and 7 requirements
- 198 addressable device capacity (99 detectors and 99 control/relay/monitor modules)
- 99 software zones
- Four (4) Style Y (Class B) NACs (Notification Appliance Circuits) with the option to convert to four (4) Style Z (Class A) circuits - special application power
- 3.0 amps total 24 VDC output circuit current, expandable to 6.0 amps with optional transformer
- Two programmable relay outputs and one fixed trouble relay
- Synchronization output for remote power supply applications (special application)
- Built-in Programmer

NOTE: MS-9200UDLS is used in this manual to refer to both the MS-9200UDLS/C (120 VAC versions) and the MS-9200UDLSE (240 VAC version) FACPs.
• Telephone Line Active LEDs
• Communication Confirmation (Kissoff) LED
• Touchtone/ Rotary dialing
• Programmable Make/Break Ratio
• EIA-232 Printer/PC interface (variable baud rate)
• 80-character LCD display (backlit)
• Real-time clock/calendar with daylight savings time control
• History file with 1,000 event capacity
• Advanced fire technology features:
 ✓ Automatic drift compensation
 ✓ Maintenance alert
 ✓ Detector sensitivity test capability (NFPA 72 compliant)
 ✓ Automatic device type-code verification
 ✓ Point trouble identification
• Waterflow selection per module point
• Alarm verification selection per detector point
• Walktest, silent or audible
• PAS (Positive Alarm Sequence) and Pre-signal per point (NFPA 72 compliant)
• Silence inhibit timer option per NAC
• Autosilence timer option per NAC
• Continuous, March Time, Temporal or California code for main circuit board NACs with two-stage capability
• Selectable strobe synchronization per NAC
• Remote Acknowledge, Alarm Silence, Reset and Drill via addressable modules, ACS annunciators or ANN-80 Remote annunciator
• Auto-program (learn mode) reduces installation time. Reports two devices set to the same address
• Password and key-protected nonvolatile memory
• User programmable password
• Fully programmable from local keypad or optional keyboard
• Optional PS-Tools programming utility for local or remote Upload/Download of programming and data (available for download from www.firelite.com)
• Compatible with Fire-Lite’s newer series devices in LiteSpeed and CLIP mode (refer to SLC Wiring Manual for a list of compatible addressable devices)
• Compatible with legacy Fire-Lite 300 Series devices in CLIP mode only (refer to the SLC Wiring Manual for a list of compatible addressable devices)
• Optional 4XTMF module (conventional reverse polarity/city box transmitter)
• Optional ZNAC-92 Class A converter module for NACs
• ANN-BUS for connection to following optional modules (cannot be used if ACS annunciators are used):
 ✓ ANN-80 Remote Annunciator
 ✓ ANN-80C Remote Indicator (Canadian Applications)
 ✓ ANN-I/O LED Driver
 ✓ ANN-S/PG Printer Module
 ✓ ANN-RLY Form-C Relay Module
 ✓ ANN-LED Annunciator Module annunciates alarm, trouble and supervisory (required for Canada and emergency signaling)
Specifications

Product Description

- ANN-RLED Annunciator Module annunciates alarms only
- ANN-LC Lite-Connect Module
- Automated activation of the ACC-25/50(ZS/T) Audio-Command-Center
- Legacy ACS/TERM Annunciators (cannot be used if ANN annunciators are used):
 - ACS Series-LED Zone Annunciators
 - LDM Graphic Annunciator Series
 - LCD-80F Liquid Crystal Display point annunciator
 - LCD-80FC Remote Fire Indicator (Canadian applications)
 - ACM-8RF Relay Module

1.2 Specifications

Refer to Illustration on page 10 for terminal locations and connections.

AC Power - TB11

MS-9200UDLS: 120 VAC, 60 Hz, 2.0 amps
MS-9200UDLSE: 220/240 VAC, 50 Hz, 1.2 amps
Wire size: minimum 14 AWG (2.00 mm²) with 600 V insulation

Battery (Sealed Lead Acid Only) - J9

Maximum Charging Circuit: Normal Flat Charge – 27.6 VDC @ 1.4 amps
Maximum Battery Charger Capacity: 18 Amp Hour (FACP cabinet holds maximum of two 18 Amp Hour batteries. The BB-26 Battery Box holds two 26 Amp Hour batteries and the CHG-75. For greater than 26 Amp Hour up to 120 Amp Hour batteries, use the CHG-75 or CHG-120F Battery Charger and BB-55F Battery Box).
Minimum Battery Size: 7 Amp Hour
Note: Jumper JP5, on the FACP main circuit board, must be cut to disable the FACP battery charger when using an external battery charger.

Communication Loop - TB10

24 VDC nominal, 27.6 VDC maximum
Maximum length - refer to “Wire Requirements” on page 178)
Maximum loop current is 400 mA (short circuit) or 100 mA (normal)
Maximum loop resistance is 40 ohms
Supervised and power-limited circuit
Refer to SLC Loop manual for wiring information

Notification Appliance Circuits - TB3 & TB4

Four (4) Style Y (Class B) NAC circuits, which can be converted to four (4) Style Z (Class A)
circuits with optional ZNAC-92 converter module
Special Application full-wave rectified power
Power-limited circuitry
NAC wiring requirements refer to “NAC Wiring” on page 180
Nominal operating voltage: 24 VDC
Current-limit: fuseless, electronic, power-limited circuitry
Maximum signaling current per circuit: 2.5 amps special application, 250 mA regulated (see Figure 1.1 on page 17)
End-of-Line Resistor: 4.7 kΩ, ½ watt (P/N 71252 UL listed) required for each circuit
Refer to the Device Compatibility Document for listed compatible devices

Two Programmable Relays and One Fixed Trouble Relay - TB5, TB6 & TB7

Contact rating: 2.0 amps @ 30 VDC (resistive), 0.5 amps @ 30 VAC (resistive)
Form-C relays
Refer to Figure 2.7 on page 33 for information on power-limited relay circuit wiring
Nonresettable or Resettable Special Application Power (24 VDC Nominal) - TB1, Terminals 1 (+) & 2 (-)

Factory-set as nonresettable, suitable for powering annunciators
Jumper selectable (JP4) for conversion to resettable power output
Maximum ripple voltage: 20 mVRMS
Total DC current available is up to 1.0 amp (see Figure 1.1 on page 17)
Power-limited circuit

Resettable or Nonresettable Special Application Power (24 VDC Nominal) - TB1, Terminals 3 (+) & 4 (-)

Factory-set as resettable, suitable for powering four-wire smoke detectors
Jumper selectable (JP6) for conversion to nonresettable power output
Maximum ripple voltage: 20 mVRMS
Total DC current available is up to 1.0 amp (see Figure 1.1)
Power-limited circuit
Refer to the Device Compatibility Document for listed compatible devices

Remote Sync Output - TB2

Remote power supply synchronization output
24 VDC nominal special application power
Maximum current is 350 mA
End-of-Line Resistor: 4.7KΩ
Output linked to NAC 1 control
Supervised and power-limited circuit

EIA-485 (TERM) or EIA-232 Serial or ANN-BUS2 - TB8

EIA-485 Terminal Mode annunciator connections: Terminal 1 (In +), 2 (In -), 3 (Out +), 4 (Out -)
EIA-232 PC/Printer applications connections: Terminal 1 (Transmit), 2 (Receive), 3 (DTR) 4 (Ground)
EIA-485 ANN Ancillary indicator connections: Terminal 3 ("A" data), 4 ("B" data)
Annunciators require non-resettable power

EIA-485 ACS or ANN-BUS1 - TB9

ACS/ANN-BUS annunciator connector, Terminal 1 (+/A) and Terminal 2 (-/B)
Annunciators require non-resettable power
1.3 Controls and Indicators

LCD Display

The FACP uses an 80-character (4 lines x 20 characters) high viewing angle LCD display. The display includes a long life LED backlight that remains illuminated. If AC power is lost and the system is not in alarm, the LED backlight will turn off to conserve batteries.

LED Indicators

LED indicators are provided to annunciate the following conditions:

- AC Power (green)
- Fire Alarm (red)
- Supervisory (yellow)
- Trouble (yellow)
- Maintenance (yellow)
- Alarm Silenced signals (yellow)
- Disabled (yellow)
- Battery fault (yellow)
- Ground fault (yellow)
Key Panel

Mounted on the main circuit board, the key panel includes a window for the LCD display and LED indicators as listed above. The key panel, which is visible with the cabinet door closed, has 25 keys, including a 16 key alpha-numeric pad similar to a telephone keypad.

Function keys:
- Acknowledge/Step
- Alarm Silence
- Drill
- Reset (lamp test)

Service/program keys:
- Keys labeled 1 to 9
- * key
- # key
- 0 (recall) key
- 1st Event key
- Clear key
- Escape key
- Mode key
- Four cursor keys (up, down, left and right)
- Enter key

Local Piezo Sounder

A piezo sounder provides separate and distinct pulse rates for alarm, trouble and supervisory conditions.

1.4 Digital Alarm Communicator/Transmitter

Two modular phone jacks allow easy connection to telephone lines. Modular jacks are labeled PH1 for Primary Phone Line and PH2 for Secondary Phone Line. Two telephone line active red LEDs are provided as well as a green *Kissoff* LED. The integral digital communicator provides the following functions:

- Line Seizure: takes control of the phone lines disconnecting any premises phones
- Off/On Hook: performs on and off-hook status to the phone lines
- Listen for dial tone: 440 Hz tone typical in most networks
- Dialing the Central Station(s) number: default is Touch-Tone®, programmable to rotary
- For tone burst or touchtone type formats: discern proper *Ack* and *Kissoff* tone(s). The frequency and time duration of the tone(s) varies with the transmission format. The control panel will adjust accordingly.
- Communicate in the following formats:
 - Ademco Contact ID
 - SIA DCS 8
 - SIA DCS 20

1.5 Components

Main Circuit Board

The main circuit board contains the system’s CPU, power supply, other primary components and wiring interface connectors. The 4XTMF option module plugs in and is mounted to the main circuit board.
Components

Product Description

Cabinet

The MS-9200UDLS backbox provides space for two batteries (up to 18 Amp Hour). Ample knockouts are provided for system wiring. Also available is an optional dress panel (DP-9692), which mounts to the inside of the cabinet (required by ULC for Canadian installations).

Transformer Assembly

One 100VA transformer is provided standard with the panel (3.0 amps maximum for output circuits). An optional 100 VA transformer XRM-24B (XRM-24BE for the MS-9200UDLSE) is available to provide maximum system and accessory power (6.0 amps total). Note that the XRM-24B and XRM-24BE are only suitable for use with MS-9200UDLS(E) with a main circuit board assembly number 9200UDLS-PCX Rev Y, where “X” and “Y” can be any letter or number. This circuit board can also be identified by using the software revision of #9200UDV4.0 (meaning version 4.0) or later.

Batteries

The MS-9200UDLS cabinet provides space for two batteries (up to 18 Amp Hour). Batteries larger than 18 Amp Hour require an external charger such as the CHG-75 or CHG-120F and a UL listed battery box such as the BB-26 or BB-55F. Batteries must be ordered separately.

1.5.1 Intelligent Addressable Detectors: Newer Series

Intelligent, addressable detectors provide information to the control panel on an SLC Signaling Line Circuit (refer to the SLC Wiring Manual for detailed information on device installation, wiring and operation). This allows the control panel to continually process the information to determine the status (alarm, trouble, maintenance or normal) of each detector. Each detector responds to an SLC address that is set in the detector head using built-in rotary decimal switches. The maximum address cannot exceed address 99. Note that a blinking LED on an intelligent detector indicates communication between the detector and the control panel.

These devices (350 Series or newer) can operate in CLIP mode (Classic Loop Interface Protocol) or LiteSpeed mode to provide a quicker response. They are also compatible with older 300 Series devices. If a mix of old and new series devices are installed on the same loop, the FACP must be programmed to operate in CLIP mode. Refer to the SLC Wiring Manual for a list of compatible addressable detectors.

1.5.2 Intelligent Addressable Modules: Newer Series

The newer series of Control Modules and Monitor Modules provide an interface between the control panel and conventional notification and initiating devices. Each module can be set to respond to an address with built-in rotary switches. The maximum address cannot exceed address 99. Note that a blinking LED on an addressable module indicates communication between the module and the control panel.

These devices (i.e., MMF-300, MMF-301, MMF-302, CMF-300, CRF-300) can operate in CLIP mode (Classic Loop Interface Protocol) or LiteSpeed mode to provide a quicker response. They are also compatible with older 300 series devices. If a mix of old and new series devices are installed on the same loop, the FACP must be programmed to operate in CLIP mode. Refer to the SLC Wiring Manual for a list of compatible addressable modules. Refer to the Device Compatibility Document for a list of approved conventional notification and initiating devices.
1.5.3 300 Series Intelligent Addressable Devices

Fire-Lite’s 300 Series Intelligent Addressable Devices are fully compatible with the MS-9200UDLS FACP. The address of 300 Series devices cannot be set above 99. Refer to the SLC Wiring Manual for a list of compatible addressable devices.

1.5.4 Addressable Device Accessories

End-of-Line Resistor Assembly

The End-of-Line resistors are included with each module. Refer to the specific module documentation for specific information.

Power Supervision Relay

The UL listed End-of-Line power supervision relay is used to supervise the power to 4-wire smoke detectors and notification appliances.

EOL-C(R/W) Mounting Plate

The EOL-CR (red) and EOL-CW (white) are single End-of-Line resistor plates which are required for use in Canada. An ELR, which is supplied with each module and fire alarm control panel, is mounted to the EOL-C(R/W) plate. Resistors mounted to the plate can be used for the supervision of a monitor and control module circuit.

1.6 Optional Modules

The MS-9200UDLS main circuit board includes option module connectors for the following modules:

4XTMF Transmitter Module

The 4XTMF provides a supervised output for local energy municipal box transmitter, alarm and trouble reverse polarity. It includes a disable switch and disable trouble LED. A jumper on the module is used to select an option which allows the reverse polarity circuit to open with a system trouble condition if no alarm condition exists. The module plugs into connectors J5 and J6 which are located near the right edge the main circuit board. When the 4XTMF module is installed, Jumper JP3, on the main circuit board, must be cut to allow supervision of the module.

ZNAC-92 Class A Converter Module

The ZNAC-92 is an optional Class A conversion module which mounts to connector J14 on the upper left side of the MS-9200UDLS circuit board. This module allows the MS-9200UDLS to support four (4) Style Z (Class A) Notification Appliance Circuits.

1.7 Accessories

1.7.1 PS-Tools Programming Utility

The PS-Tools Programming Utility can be used to locally or remotely program the FACP from most IBM compatible computers (PC), running Windows® XP (or newer). The FACP program files can also be created and stored on the PC for future download to the control panel. The PK-CD Kit includes the Windows-based Programming Utility software on CD-ROM with on-line help file. A standard USB cable with male-A to male-B connectors, which must be purchased separately, is required for local connection of the PC to the USB port J12 on the FACP main circuit board. Remote programming requires that the PC have a 2400 baud (or faster) modem.
Important: Remote modification of FACP programming requires that the panel be enabled for remote download (refer to “Remote Site Upload/Download” on page 157). Remote interrogation of panel programming, history logs, detector status, etc., is possible without enabling the remote download option.

1.7.2 DP-9692 Dress Panel

An optional dress panel DP-9692 is available for the MS-9200UDLS (required by ULC for Canadian installations). The dress panel restricts access to the system wiring while allowing access to the key panel. A ground strap must be connected between the stud on the inside of the dress panel and the ground stud in the backbox.

![DP-9692 Dress Panel](dp9200udls.wmf)

1.7.3 Trim Ring

An optional Trim Ring (P/N TR-CE) is available for the FACP backbox. The Trim Ring adds 1.5” of wall coverage around the backbox, concealing hardware and providing a finished appearance for a semi-flush mounted panel.

1.7.4 Multi-Module Mounting Bracket

An addressable Multi-Module can be installed inside the FACP backbox using the MULTIMOD-BRKT module mounting bracket. Refer to the *MULTIMOD-BRKT Installation Document* P/N 53547 for additional information.

1.7.5 Battery Box

BB-26

The BB-26 battery box may be used to house up to two 26 AH batteries and the CHG-75 Battery Charger.

BB-55F

The BB-55F battery box may be used to house two 26 AH batteries, two 60 AH batteries or one 100 AH battery. When the CHG-120F is mounted in the BB-55F, two 26 AH or one 60 AH battery may also be housed in the battery box.
1.7.6 Battery Charger

CHG-75 Battery Charger

The CHG-75 is capable of charging up to 75 AH lead-acid batteries with the MS-9200UDLS FACP. The FACP battery charger must be disabled, by removing jumper JP5, when using the CHG-75. The charger and up to 26 AH batteries can be housed in the BB-26 battery box. Larger batteries and the charger can be housed in the BB-55F battery box which can be mounted up to 20 feet away from the control panel. Refer to the CHG-75 Manual for additional information.

CHG-120F Battery Charger

The CHG-120F is capable of charging up to 120 AH lead-acid batteries with the MS-9200UDLS FACP. The FACP battery charger must be disabled, by removing jumper JP5, when using the CHG-120F. The batteries and charger can be housed in the BB-55F battery box which can be mounted up to 20 feet away from the control panel. Note that when using the BB-55F for housing the charger and batteries greater than 26AH, multiple BB-55Fs are required. Refer to the CHG-120F Manual for additional information.

1.7.7 IPDACT Internet Protocol DACT

The IPDACT is a compact, Internet Protocol Digital Alarm Communicator/Transmitter designed to allow FACP status communication to a Central Station via the internet. No telephone lines are required when using the IPDACT. Using Contact ID protocol from the FACP, the IPDACT converts the standard DACT phone communication to a protocol that can be transmitted and received via the internet. It also checks connectivity between the FACP and Central Station. The IPDACT can be mounted inside the FACP cabinet, while still maintaining space for two 18 amp hour batteries, using the IPBRKT mounting bracket. Refer to the IPDACT Product Installation Document P/N 53109 for additional information.

1.7.8 ECC-50/100

The ECC-50/100 is a single channel, 50 watt, 25 V_RMS, emergency voice evacuation panel that may be used for fire applications, mass notification applications, or both. Automatic activation of the ECC-50/100 is possible via eight Command Input Circuits (CMD) or via the ACS/ANN BUS serial communications link from the MS-9200UDLS FACP. Not for use in Canadian applications.

1.7.9 ECC-FFT

An ECC-FFT Fire Fighter Telephone provides supervision, annunciation, and control for local and remote telephone handsets. The ECC-FFT’s keypad provides indications of phone activation and corresponding trouble conditions. Not for use in Canadian applications.

1.7.10 W-GATE Wireless Gateway

The W-GATE Wireless Gateway acts as a bridge between a group of wireless fire devices and a LiteSpeed SLC loop on the MS-9200UDLS. It is powered by the SLC loop or by a regulated, external 24VDC UL-listed power supply. Available wireless devices include a photo detector, a photo/heat detector, a fixed-temperature heat detector, a rate-of-rise heat detector, and a monitor module. For details about wireless devices, system setup, and operation, see the SWIFT™ Smart Wireless Integrated Fire Technology Instruction Manual #LS10036-000FL-E.

NOTE: The W-GATE, as part of the wireless network, has been tested for compliance with the Federal Communications Commission (FCC) requirements of the United States Government. It has not been evaluated for use outside the USA. Use of this system outside the USA is subject to local laws and rules to which this product may not conform. It is the sole responsibility of the user to determine if this product may be legally used outside the USA.
1.7.11 ANN-BUS Annunciators/Modules

WARNING: RISK OF ELECTRICAL SHOCK AND EQUIPMENT DAMAGE

DISCONNECT ALL SOURCES OF POWER (AC AND DC) BEFORE INSTALLING OR REMOVING ANY MODULES OR WIRING.

Guidelines

- The legacy ACS annunciators may **not** be used on connector TB9 if new ANN-BUS annunciators are being used on the primary ANN-BUS (connector TB9) due to incompatible serial communication protocols.

- A variety of optional annunciation devices can be connected to an ANN-BUS communication circuit. ANN Series devices can be connected to the primary communication circuit (EIA-485) terminals on TB9. A secondary communication circuit for these devices is available at TB8. Each ANN-BUS communication circuit supports up to eight (8) annunciators. Compatible devices include the following:
 - ANN-80 LCD Annunciator
 - ANN-80C LCD Indicator (Canadian Applications)
 - ANN-S/PG Serial/Parallel Printer Interface Module
 - ANN-I/O LED Driver Module
 - ANN-LED Annunciator Module (alarm, trouble, supervisory LEDs)
 - ANN-RLED Annunciator Module (red alarm LEDs only)
 - ANN-RLY Relay Module (can be mounted in the supplied FACP chassis)
 - ANN-LC Lite-Connect Module (secondary ANN-BUS only)

- When operating two ANN-BUS circuits, only one ANN-S/PG Printer module can be used in the system. If using the local printer to print, an ANN-S/PG Printer module cannot be installed in the system.

- The panel is capable of operating a primary ANN-BUS (TB9) and a secondary ANN-BUS (TB8) simultaneously.

- The panel is capable of operating the ACS-BUS (connector TB9) and the secondary ANN-BUS (connector TB8) simultaneously.

- The secondary ANN-BUS (on connector TB8) does not support legacy ACS annunciators.

- The secondary ANN-BUS can be configured to support either terminal mode annunciators, printer/PC devices, or ANN-BUS devices.

- Only one audio system (ECC-50/100 or ACC-25/50) may be connected to the ANN-BUS.

ANN-80 Remote Fire Annunciator

The ANN-80 Annunciator is a compact, 80 character, backlit LCD remote fire annunciator. It mimics the display on the control panel and will annunciate device type, point alarm, trouble or supervisory condition, zone assignment plus any custom alpha labels programmed into the FACP. The annunciator also provides system status LEDs to display AC Power, Alarm, Trouble, Supervisory and Alarm Silenced conditions. Additionally, the annunciator is capable of remotely performing critical system functions such as Acknowledge, Silence, Reset and Drill. Communication between the ANN-80 and FACP is accomplished over a two wire RS-485 serial interface employing the ANN-BUS communication format. The devices are powered, via two additional wires, from either the host FACP or remote UL-listed, filtered, power supply.

The function buttons, keyswitch and piezo sounder may be individually enabled and disabled through the FACP software. Refer to “ANN-80 Options” on page 118 for a description of this feature and programming information.
Note that if the keyswitch is enabled and remains in the unlocked position for more than two minutes without any buttons being pressed on the annunciator, a trouble indication will be annunciated. The ANN-80C (for Canadian applications) does not provide FACP control for Acknowledge, Reset, Silence, or Drill.

ANN-S/PG Serial/Parallel Interface Module

The ANN-S/PG Serial/Parallel Interface module allows the connection of a remote serial or parallel printer to the FACP for a real-time log of system events, detector status reports and event history. The module is provided with a plastic enclosure for surface mounting.

ANN-I/O LED Driver Module

The ANN-I/O is an LED driver module that can be used in a wide variety of applications, including as an interface with most customized graphic annunciators. The ANN-I/O can drive up to 40 LEDs. The module is provided with a plastic wall mount.

ANN-LED Annunciator Module

The ANN-LED and ANN-RLED annunciator modules provide LED annunciation of general system faults and input zones/points when used with a compatible FACP. The ANN-LED module provides alarm (red), trouble (yellow) and supervisory (yellow) indication for up to ten input zones or addressable points. The ANN-RLED provides alarm (red) indication for up to 30 input zones or addressable points. Multiple ANN-(R)LED modules may be used for full system coverage.

ANN-RLY Annunciator Module

The ANN-RLY relay module provides 10 programmable Form-C relays when used with a compatible FACP.

ANN-LC Lite-Connect Module

The ANN-LC module provides a multi-FACP system where a single communicator and phone line for Alarm, Supervisory, and Trouble reporting to a central station are shared using fiber-optic cables. Each FACP requires its own ANN-LC. The FACP/ANN-LC pair are referred to as a node on the fiber circuit. Each node requires a unique node address. The node communicates with other nodes via fiber-optic media from one ANN-LC to the next.

1.7.12 Legacy ACS Series LED Zone Type Annunciators

WARNING: RISK OF ELECTRICAL SHOCK AND EQUIPMENT DAMAGE

DISCONNECT ALL SOURCES OF POWER (AC AND DC) BEFORE INSTALLING OR REMOVING ANY MODULES OR WIRING.

The legacy ACS annunciators may **not** be used if new ANN-BUS annunciators are being used on the primary ANN-BUS connector (TB9) due to incompatible serial communication protocols. Refer to “Guidelines” on page 23 for rules governing the use of various annunciator types.

The legacy ACS Series Annunciators remotely display alarm and trouble status as well as system status. In addition, they can provide remote Acknowledge, Silence, Reset and Drill functions. For more detailed information, refer to the appropriate annunciator manual. Following is a list of annunciators which can be used with the MS-9200UDLS.

- **ACM-16ATF** Annunciator Control Module annunciates 16 zones with 16 red alarm LEDs and 16 yellow trouble LEDs. In addition, it has a System Trouble LED, an On Line/Power LED and a local piezo sounder.

- **AEM-16ATF** Annunciator Expander Module annunciates 16 zones with 16 red alarm LEDs and 16 yellow trouble LEDs

- **ACM-32AF** Annunciator Control Module annunciates 32 alarm zones with 32 red LEDs. In addition, it has a System Trouble LED, an On Line/Power LED and a local piezo sounder. It also has a switch for local piezo silence.
• **AEM-32AF** Annunciator Expander Module annunciates 32 alarm zones with 32 red LEDs

* In Canada, the color red must be used to indicate active alarm inputs. Yellow indicates supervisory, burglary or trouble signals. Green indicates the presence of power, or an activated output.

LCD-80F/LCD-80FC Remote Fire Annunciator/Indicator

The LCD-80F/LCD-80FC annunciator/Indicator is an 80-character backlit LCD remote fire annunciator/indicator that is capable of displaying English language text. Communications between the control panel and the annunciator is accomplished over a serial interface employing the EIA-485 communication standard. Up to 32 LCD-80F/LCD-80FC annunciators/indicators may be connected to the EIA-485 circuit. The annunciators/indicators may be powered from the host FACP or a remote UL listed filtered power supply such as the FCPS Series. For more detailed information, refer to the *LCD-80F* and *LCD-80FC* manuals.

LDM Series Lamp Driver Modules (Graphic Annunciator)

The LDM Series Lamp Driver Modules, which consist of the LDM-32F master and LDM-E32F expander modules, are used to provide an interface to a custom graphic LED annunciator.

Legacy ACM-8RF Relay Control Module

The ACM-8RF module provides eight Form-C relays with contacts rated for 5 amps. The ACM-8RF mounts in the lower right corner of the FACP backbox using the ACM-8RF-BRKT mounting bracket, also allowing space for batteries.

1.8 Getting Started

The following is a brief summary of the minimal steps involved in bringing an MS-9200UDLS online:

- Install Backbox and Main Circuit Board (refer to “Mounting the Backbox” on page 28)
- Address and Install Intelligent Devices (refer to the SLC Wiring Manual)
- Enter Autoprogramming (refer to “Autoprogram” on page 67)
- Resolve Programming Conflicts
- Go to Point Program to Enter Specific Data (refer to “Point Program” on page 68). Use the right and left arrow keys to navigate between devices.

1.9 Telephone Requirements and Warnings

1.9.1 Telephone Circuitry

- **Ringer Equivalence Number (REN) = 0.0B**
- **AC Impedance: 10.0 Mega Ohm**
- **Complies with FCC Part 68**
- **Mates with RJ31X Male Connector**
- **Supervision Threshold: loss of phone line voltage for 2 minutes**

The REN is used to determine the quantity of devices which may be connected to the telephone line. Excessive RENs on the telephone line may result in the devices not ringing in response to an incoming call. In most, but not all areas, the sum of the RENs should not exceed five (5.0). To be certain of the number of devices that may be connected to the line as determined by the total RENs, contact the telephone company to determine the maximum REN for the calling area.
1.9.2 Digital Communicator

Before connecting the control panel to the public switched telephone network, the installation of two RJ31X jacks is necessary. If trouble is experienced with this equipment, for repair or warranty information, please contact:

Manufacturer: Fire•Lite Alarms, Inc.
One Fire-Lite Place
Northford, CT 06472
(203) 484-7161

Product Model Number: **MS-9200UDLS**
FCC Registration Number: **US:1W6AL11B9200UDLS**
Ringer Equivalence: **1.1B**

NOTE: This equipment complies with Part 68 of the FCC rules and the requirements adopted by the ACTA. On the inside of the FACP door is a label that contains, among other information, a product identifier in the format US:AAAAEO#TXTXXX. If requested, this number must be provided to the telephone company.

Alarm dialing equipment must be able to seize the telephone line and place a call in an emergency situation. It must be able to do this even if other equipment (telephone, answering system, computer modem, etc.) already has the telephone line in use. To do so, alarm dialing equipment must be connected to a properly installed RJ31X jack that is electrically in series with and ahead of all other equipment attached to the same telephone line. If there are any questions concerning these instructions, consult the telephone company or a qualified installer about installing the RJ31X jack and alarm dialing equipment. Refer to “Digital Communicator” on page 37 for an illustration of the proper installation of this equipment.

Important! The DACT must not be used to dial a phone number that is call-forwarded.

1.9.3 Telephone Company Rights and Warnings

The telephone company, under certain circumstances, may temporarily discontinue services and/or make changes in its facilities, services, equipment or procedures which may affect the operation of this control panel. However, the telephone company is required to give advance notice of such changes or interruptions.

If the control panel causes harm to the telephone network, the telephone company reserves the right to temporarily discontinue service. Advance notification will be provided except in cases when advance notice is not practical. In such cases, notification will be provided as soon as possible. The opportunity will be given to correct any problems and to file a complaint with the FCC if you believe it is necessary.

DO NOT CONNECT THIS PRODUCT TO COIN TELEPHONE, GROUND START, OR PARTY LINE SERVICES.

When the control panel activates, premise phones will be disconnected.

Two separate phone lines are required. Do not connect both telephone interfaces to the same telephone line.

The control panel must be connected to the public switched telephone network upstream (as first device) of any private telephone system at the protected premises.

A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by ACTA. This equipment is designed to be connected to the telephone network or premises wiring using a compliant RJ31X male modular plug and compatible modular jack that is also compliant.
1.9.4 For Canadian Applications

The following is excerpted from CP-01 Issue 5:

NOTICE: The Industry Canada (IC) label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational and safety requirements as prescribed in the appropriate Terminal Equipment Technical Requirements document(s). The Department does not guarantee the equipment will operate to the users’s satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure, for their own protection, that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

CAUTION

Users should not attempt to make such connections themselves, but should contact the appropriate electric inspections authority, or electrician.

“The Ringer Equivalence Number (REN) assigned to each terminal device provides an indication of the maximum number of terminals allowed to be connected to a telephone interface. The termination of an interface may consist of any combination of devices subject only to the requirement that the sum of the REN of all devices does not exceed 5.”

DOC Compliance - “This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.”

Representative: NOTIFIER/FIRE•LITE, CANADA
10 Whitmore Road
Woodbridge, Ontario L4L 7Z4
Phone: (905) 856-8733
FAX: (905) 856-9687

IC Certificate Number:
Ringer Equivalence Number (REN): 1.3B
Load Number: 2
Section 2: Installation

The cabinet may be either semi-flush or surface mounted. The cabinet mounts using two key slots and two 0.250" (6.35 mm) diameter holes located in the backbox. The key slots are located at the top of the backbox and the two securing holes at the bottom.

Carefully unpack the system and check for shipping damage. Mount the cabinet in a clean, dry, vibration-free area where extreme temperatures are not encountered. The area should be readily accessible with sufficient room to easily install and maintain the panel. Locate the top of the cabinet approximately 5 feet (1.5 m) above the floor with the hinge mounting on the left. Determine the number of conductors required for the devices to be installed. Sufficient knockouts are provided for wiring convenience. Select the appropriate knockout(s) and pull the conductors into the box. All wiring should be in accordance with the National and/or Local codes for fire alarm systems.

2.1 Mounting the Backbox

To prevent damage to the circuit board and to facilitate backbox mounting, the chassis with main circuit board and transformer can be easily removed. Loosen the two 3/8" nuts securing the top flanges of the chassis, then slide the chassis up to free it from the lower tabs. Place the chassis assembly in a safe location until it can be reinstalled in the backbox.

1. Mark and predrill hole in the wall for the center top keyhole mounting bolt using the dimensions illustrated in Figure 2.3 on page 30.
2. Install center top fastener in the wall with the screw head protruding.
3. Place backbox over the top screw, level and secure.
4. Mark and drill the left and right upper and lower mounting holes.
 Note: Outer holes (closest to sidewall) are used for 16” O.C. stud mounting.
5. Install remaining fasteners and tighten.

CAUTION: STATIC SENSITIVE COMPONENTS
THE CIRCUIT BOARD CONTAINS STATIC-SENSITIVE COMPONENTS. ALWAYS GROUND YOURSELF WITH A PROPER WRIST STRAP BEFORE HANDLING ANY BOARDS SO THAT STATIC CHARGES ARE REMOVED FROM THE BODY. USE STATIC SUPPRESSIVE PACKAGING TO PROTECT ELECTRONIC ASSEMBLIES.

Figure 2.1 MS-9200UDLS Chassis Removal
2.2 Mounting Optional Transformer/Remounting Chassis

One XRM-24B(E) transformer is supplied standard with the control panel. An optional second XRM-24B(E) transformer can be ordered and installed to provide maximum system power. Note that the XRM-24B and XRM-24BE are only suitable for use with MS-9200UDLS(E) with a main circuit board assembly number 9200UDLS-PCX Rev Y, where “X” and “Y” can be any letter or number. Install the transformers in the locations indicated in the following illustration.

1. The standard transformer is premounted to the chassis. If the optional second transformer has been ordered, mount it to the chassis as illustrated below. The chassis does not need to be removed to install the optional transformer.

2. When the location is dry and free of construction dust, install the chassis/transformer/circuit board assembly.

3. Mount the chassis to the backbox by aligning the two mounting tabs with the slots in the backbox, then position the two mounting hole tabs over the studs with nuts located in the upper portion of the backbox.

4. Slide the tabs located on the bottom of the chassis into the mounting slots in the backbox by pressing the chassis down.

5. Secure the chassis to the backbox by tightening the two mounting nuts (#10-32) at the top, and to ensure proper grounding, use a 3/8” nut driver or socket.

6. If the main circuit board is not already attached to the chassis, install it by positioning the ten mounting holes over the studs on the chassis and secure with the supplied screws.

7. Connect the Standard XRM-24B(E) Transformer plug to Transformer 1 Connector J10 on the FACP main circuit board

8. Connect the Optional XRM-24B(E) Transformer plug to Transformer 2 Connector J11 on the FACP main circuit board.

9. Complete the installation as detailed in the following sections.

Figure 2.2 MS-9200UDLS Main Board/Chassis Installation

- **Standard XRM-24B(E) Transformer**
 - Mounting Slot
 - Mounting Studs
- **Optional XRM-24B(E) Transformer**
 - Transformer mounting location
 - Transformer Installation
 - Remove screw and spacer from chassis.
 - Slide top flange of XRM-24B(E) into slot at top left of chassis.
 - Slide bottom flange of XRM-24B(E) onto transformer mounting stud.
 - Secure with spacer and screw.
Semi-Flush Mounting

Do not recess box more than 3.875" into wall to avoid covering venting holes on top of box.

Figure 2.3 MS-9200UDLS Cabinet Mounting
An optional Trim Ring (P/N TR-CE-) is also available for semi-flush mount installations.
2.3 Power

WARNING: RISK OF EQUIPMENT DAMAGE AND PERSONAL INJURY

SEVERAL DIFFERENT SOURCES OF POWER CAN BE CONNECTED TO THIS PANEL. DISCONNECT ALL SOURCES OF POWER BEFORE SERVICING. THE PANEL AND ASSOCIATED EQUIPMENT MAY BE DAMAGED BY REMOVING AND/OR INSERTING CARDS, MODULES OR INTERCONNECTING CABLES WHILE THIS UNIT IS ENERGIZED.

2.3.1 AC Power and Earth Ground Connection

Primary power required for the FACP is 120 VAC, 60 Hz, 2.0 amps for the MS-9200UDLS or 220/240 VAC, 50 Hz, 1.2 amps for the MS-9200UDLSE. Overcurrent protection for this circuit must comply with Article 760 of the National Electrical Code (NEC) and/or local codes. Use 14 AWG (2.00 mm²) or larger wire with 600 volt insulation rating. Make certain that the AC mains circuit breaker is off before wiring any connections between the mains and the control panel. Connect wiring from the AC mains to TB11 on the FACP, being careful to observe proper connections.

Remove the two keps nuts from the grounding stud in the backbox. Connect the incoming earth ground wire to supplied cable #71073 with a wire nut. Position the ring terminal end over the grounding stud. Secure with one of the keps nuts. Place the ring terminal from the other supplied ground cable #71073 over the ground stud and secure with the second keps nut. Wire the ground cable to the bottom position of TB11. Refer to Figure 2.1 on page 28 for location of the stud. Ensure that the ground for AC mains is the first cable installed, closest to the backbox. This connection is vital in reducing the panel’s susceptibility to transients generated by lightning and electrostatic discharge. Apply AC power to the panel only after the system is completely installed and visually checked. Note that AC power must be applied to the panel before installing the battery interconnect cable (refer to the following section).
2.3.2 Battery Power

The batteries must be sealed lead acid type. Before connecting the batteries to the FACP, make certain that the interconnect cable between the batteries is not connected. Do not connect the interconnect cable until the system is completely installed. Observe polarity when connecting the batteries. Connect the battery cable to J9 on the main circuit board. Refer to “Power Supply Calculations” on page 160, for calculation of the correct battery rating.

WARNING: RISK OF PERSONAL INJURY

BATTERY CONTAINS SULFURIC ACID WHICH CAN CAUSE SEVERE BURNS TO THE SKIN AND EYES AND CAN DESTROY FABRICS. IF CONTACT IS MADE WITH SULFURIC ACID, IMMEDIATELY FLUSH THE SKIN OR EYES WITH WATER FOR 15 MINUTES AND SEEK IMMEDIATE MEDICAL ATTENTION.

2.3.3 Special Application DC Power Output Connection

All Special Application DC power outputs are power-limited (refer to “UL Power-limited Wiring Requirements” on page 36).

Power-limited Non-resettable or Resettable Power
1.0 amperes max., 24 VDC nominal filtered, non-resettable or resettable power can be drawn from TB1 Terminals 1(+) and 2(-)

Power-limited Resettable or Non-resettable Power
1.0 amperes max., 24 VDC nominal filtered, resettable or non-resettable power can be drawn from TB1 Terminals 3(+) and 4(-)

JP4 is used to configure TB1, Terminals 1 & 2 for:
• Resettable Power - jumper pins 2 & 3 of JP4
• Nonresettable Power - jumper pins 1 & 2 of JP4 as shown

JP6 is used to configure TB1, Terminals 3 & 4 for:
• Resettable Power - jumper pins 2 & 3 of JP4
• Nonresettable Power - jumper pins 1 & 2 of JP4 as shown

Figure 2.6 Special Application Power Outputs - 24 VDC

2.4 Relays

The FACP provides two programmable Form-C relays and one fixed fail-safe Form-C trouble relay, all with contacts rated for 2.0 amps @ 30 VDC (resistive) or 0.5 amps @ 30 VAC (resistive).

Note that relay connections may be power-limited or nonpower-limited, provided that 0.25” spacing is maintained between conductors of power-limited and nonpower-limited circuits. Refer to UL Power-limited wiring requirements.

Note that the programmable relay labeled as Relay 1 is factory default programmed as Alarm and programmable Relay 3 is factory default programmed as Supervisory. The relay labeled Relay 2 is fixed as a Trouble relay and cannot be changed. It is a fail-safe relay which will transfer on any trouble or total power failure.

Figure 2.7 Relay Terminals
2.5 Notification Appliance Circuits

The control panel provides four Style Y (Class B) or four Style Z (Class A) NACs (Notification Appliance Circuits) when using the optional ZNAC-92 Class A converter module. Each circuit is capable of 2.5 amps of current. Total current in alarm for all external devices cannot exceed 6.0 amps (refer to “Calculating the System Current Load” on page 160). Use UL listed 24 VDC notification appliances only. Circuits are supervised and power-limited. Refer to the Device Compatibility Document for a listing of compatible notification appliances. The NACs, which are located on the main circuit board, may be expanded via the FCPS Series field charger/power supplies.

The following sections describe the configuration and wiring of Style Y and Style Z Notification Appliance Circuits on the MS-9200UDLS main circuit board.

2.5.1 Style Y (Class B) NAC Wiring

4 Style Y (Class B) Notification Appliance Circuits, supervised and power-limited - 4.7 kΩ, ½ watt P/N: 71252 UL listed

![Figure 2.8 NAC Style Y (Class B) Wiring](image)

Figure 2.8 NAC Style Y (Class B) Wiring
2.5.2 Style Z (Class A) NAC Wiring with ZNAC-92 Converter

Remote Synchronization Output

2.6 Remote Synchronization Output

Synchronization is a feature that controls the activation of notification appliances in such a way that all devices will turn on and off at exactly the same time. This is particularly critical when activating strobes which must be synchronized to avoid random activation and a potential hazard to individuals. Devices connected directly to the control panel’s NACs can be synchronized as described in “Type” on page 97.

Notification appliances connected to FCPS NAC power supplies require synchronization with the FACP’s devices. This can be accomplished by connecting the Remote Synchronization Output from TB2 of the MS-9200UDLS to the sync input of the FCPS-24FS6/8 Power Supply. The 24 VDC signal from TB2 follows, that is mimics, the signal on NAC1. This allows the devices connected to the power supply to be synchronized with the devices connected to NAC1 on the FACP.

The Remote Synchronization Output is power-limited and supervised (refer to “UL Power-limited Wiring Requirements” on page 36). A 4.7 KΩ ELR resistor must be connected to the end of the wiring at the remote power supply.

![Figure 2.9 NAC Style Z (Class A) Wiring](image-url)

![Figure 2.10 Remote Sync Output](image-url)
2.7 UL Power-limited Wiring Requirements

Power-limited and nonpower-limited circuit wiring must remain separated in the cabinet. All power-limited circuit wiring must remain at least 0.25" (6.35 mm) away from any nonpower-limited circuit wiring and nonpower-limited circuit wiring must enter and exit the cabinet through different knockouts and/or conduits. When connecting the ground cables, be sure that the AC mains ground is the first one installed, closest to the backbox. A typical wiring diagram for the MS-9200UDLS is shown below.

![Typical UL Power-limited Wiring Requirements Diagram]

Figure 2.11 Typical UL Power-limited Wiring Requirements
Two independent telephone lines can be connected to the control panel. Telephone line control/command is made possible via double line seizure as well as usage of an RJ31X style interconnection. **Note that it is critical that the panel’s digital communicator be located as the first device on the incoming telephone circuit to properly function.**

Important! The DACT must not be used to dial a phone number that is call-forwarded.

![Diagram of DACT Installation](image)

Figure 2.12 DACT Installation

The control panel's digital communicator is built into the main circuit board. Connection and wiring of two phone lines is required as shown below.

![Diagram of Wiring Phone Jacks](image)

Figure 2.13 Wiring Phone Jacks
2.8.1 Ferrite Clamp Installation

Per FCC requirements, ferrite clamps (supplied) are required on both phone lines. Apply one clamp per phone line inside the FACP cabinet as shown in Figures 2.11 and 2.13. To install, simply close the clamp around the phone line until it snaps shut. It is not necessary to loop the phone line around the clamp.

![Figure 2.14 Ferrite Clamp Installation](image)

Simply clasp the clamp around the phone line. There is no need to loop the phone line around the clamp.

2.9 Optional Module Installation

WARNING: RISK OF ELECTRIC SHOCK AND EQUIPMENT DAMAGE

DISCONNECT ALL SOURCES OF POWER (AC AND DC) BEFORE INSTALLING OR REMOVING ANY MODULES OR WIRING.

2.9.1 4XTMF Transmitter Module Installation

The 4XTMF provides a supervised output for a local energy municipal box transmitter in addition to alarm and trouble reverse polarity. A jumper option allows the reverse polarity circuit to open with a system trouble condition if no alarm condition exists. A disable switch allows disabling of the transmitter output during testing to prevent accidental calling of the monitoring service.

Local Energy Municipal Box Service (NFPA 72 Auxiliary Fire Alarm Systems):

- Supervisory Current: 5.0 mA
- Trip Current: 350 mA (subtracted from notification appliance power)
- Coil Voltage: 3.65 VDC
- Maximum Coil Resistance: 14.6 ohms
- Maximum allowable wire resistance between panel and trip coil: 3 ohms
- Municipal Box wiring can leave the building

Remote Station Service (NFPA 72 Remote Station Fire Alarm Systems) - Intended for connection to a polarity reversal circuit or a Remote Station receiving unit having compatible ratings:

- Maximum load for each circuit: 10 mA
- Reverse polarity output voltage: 24 VDC
- Remote Alarm and Remote Trouble wiring can leave the building
Before installing the module, place the disconnect switch to the right (disconnect) position to prevent accidental activation of the municipal box. Note that a Disconnect LED will illuminate after the module is installed in the MS-9200UDLS. In addition, the System Trouble LED will turn on to indicate the Disconnect condition.

Note: The 4XTMF Module is not directly suitable for transmitting a reverse polarity supervisory signal. For applications using reverse polarity of a supervisory signal, refer to “FACP with Keltron” on page 177.

The following steps must be followed when installing the 4XTMF module:

1. Remove all power (Primary and Secondary) from the FACP before installing 4XTMF.
2. Cut jumper JP3 on the main circuit board to allow the control panel to supervise the 4XTMF module.
3. Carefully plug the connectors on the 4XTMF module into connectors J5 and J6 on the MS-9200UDLS main circuit board, being careful not to bend any pins.
4. Secure 4XTMF module to standoffs with supplied screws.
5. Reapply power to the FACP.
6. For proper 4XTMF operation, the output relays must be programmed for the factory default settings: Alarm Relay 1, Trouble Relay 2 and Supervisory Relay 3.
7. When the installation has been complete, enable the 4XTMF module by sliding the disconnect switch to the left.
8. Test system for proper operation.

Figure 2.15 4XTMF Transmitter Module
Figure 2.16 4XTMF Connectors to MS-9200UDLS Connectors

NOTE: Jumper JP2 on the FACP main circuit board can be used to configure the FACP supervisory relay for operation with the 4XTMF module. Relay 3 at TB5 must be programmed as a supervisory relay. Cutting JP2 will allow the 4XTMF to generate a trouble if the supervisory contact opens. Leaving JP2 in will prevent generation of a trouble if the supervisory contact opens.
2.9.2 ANN-BUS Annunciators/Modules

ANN-BUS Wiring

This section contains information on calculating ANN-BUS wire distances and the types of wiring configurations (Class B).

Calculating Wiring Distance for ANN-BUS Modules

The following instructions will guide the installer in determining the type of wire and the maximum wiring distance that can be used with FACP ANN-BUS accessory modules.

To calculate the wire gauge that must be used to connect ANN-BUS modules to the FACP, it is necessary to calculate the total worst case current draw for all modules on a single 4-conductor bus. The total worst case current draw is calculated by adding the individual worst case currents for each module. The individual worst case values are shown in the following table:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Worst Case Current Draw 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN-80(C) LCD Annunciator/Indicator</td>
<td>0.040 amps</td>
</tr>
<tr>
<td>ANN-S/IPG Serial/Parallel Printer Interface Module</td>
<td>0.040 amps</td>
</tr>
<tr>
<td>ANN-I/O LED Driver Module</td>
<td>0.200 amps</td>
</tr>
<tr>
<td>ANN-(R)LED Annunciator Module</td>
<td>0.068 amps</td>
</tr>
<tr>
<td>ANN-RLY Relay Module</td>
<td>0.075 amps</td>
</tr>
<tr>
<td>ANN-LC Lite-Connect Module</td>
<td>0.150 amps</td>
</tr>
</tbody>
</table>

1 When powering the ANN-BUS from one of the (nonresettable) DC power outputs at TB1, the total worst case current draw cannot exceed 1.0 amp. If sharing this DC output with other devices, the worst case current drawn by these devices must be combined with the ANN-BUS current draw, and the total cannot exceed 1.0 amp. If the total current demand exceeds 1.0 amp, refer to "Powering ANN-BUS Devices from an Auxiliary Power Supply" on page 44.

After calculating the total worst case current draw, Table 2.1 specifies the maximum distance the modules can be located from the FACP on a single wire run. The table ensures 6.0 volts of line drop maximum. In general, the wire length is limited by resistance, but for heavier wire gauges, capacitance is the limiting factor. These cases are marked in the chart with an asterisk (*). Maximum length can never be more than 6,000 feet (1,800 m), regardless of gauge used. The formula used to generate this chart is shown in the note below.

<table>
<thead>
<tr>
<th>Total Worst Case Current Draw (amps)</th>
<th>22 Gauge</th>
<th>18 Gauge</th>
<th>16 Gauge</th>
<th>14 Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>1,852 ft.</td>
<td>4,688 ft.</td>
<td>* 6,000 ft.</td>
<td>* 6,000 ft.</td>
</tr>
<tr>
<td>0.200</td>
<td>926 ft.</td>
<td>2,344 ft.</td>
<td>3,731 ft.</td>
<td>5,906 ft.</td>
</tr>
<tr>
<td>0.300</td>
<td>617 ft.</td>
<td>1,563 ft.</td>
<td>2,488 ft.</td>
<td>3,937 ft.</td>
</tr>
<tr>
<td>0.400</td>
<td>463 ft.</td>
<td>1,172 ft.</td>
<td>1,866 ft.</td>
<td>2,953 ft.</td>
</tr>
<tr>
<td>0.500</td>
<td>370 ft.</td>
<td>938 ft.</td>
<td>1,493 ft.</td>
<td>2,362 ft.</td>
</tr>
</tbody>
</table>

Table 2.1 Wiring Distances
The following formulas were used to generate the wire distance chart:

\[
\text{Maximum Resistance (Ohms)} = \frac{6.0 \text{ Volts}}{\text{Total Worst Case Current Draw (amps)}}
\]

\[
\text{Maximum Wire Length (feet)} = \frac{\text{Maximum Resistance (Ohms)}}{Rpu} \times 500 \quad (6,000 \text{ feet maximum})
\]

where: \(Rpu = \text{Ohms per 1,000 feet for various Wire Gauges (see table below)} \)

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Ohms per 1,000 feet ((Rpu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>16.2</td>
</tr>
<tr>
<td>18</td>
<td>6.4</td>
</tr>
<tr>
<td>16</td>
<td>4.02</td>
</tr>
<tr>
<td>14</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Exception: When using the ANN-RLY module, the installer must ensure that the maximum 24VDC power line drop does not exceed 0.3 volts. This results in the following wiring limitations:

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Maximum Wire Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>312 feet</td>
</tr>
<tr>
<td>16</td>
<td>497 feet</td>
</tr>
<tr>
<td>14</td>
<td>787 feet</td>
</tr>
<tr>
<td>12</td>
<td>1,250 feet</td>
</tr>
</tbody>
</table>

Wiring Distance Calculation Example:

Suppose a system is configured with the following ANN-BUS modules:
- 3 ANN-80 Remote Fire Annunciators
- 1 ANN-S/PG Serial/Parallel Printer Interface Module

The total worst case current is calculated as follows:

\[
\text{ANN-80 Current Draw} = 3 \times 0.040 \text{ amps} = 0.120 \text{ amps}
\]

\[
\text{ANN-S/PG Current Draw} = 1 \times 0.040 \text{ amps} = 0.040 \text{ amps}
\]

\[
\text{Total Worst Case Current Draw} = 0.160 \text{ amps}
\]

Using this value and referring to the Wiring Distance Table 2.1 on page 41, it can be found that the available options are:

- ✓ 926 feet maximum using 22 Gauge wire
- ✓ 2,344 feet maximum using 18 Gauge wire
- ✓ 3,731 feet maximum using 16 Gauge wire
- ✓ 5,906 feet maximum using 14 Gauge wire
Wiring Configuration

Figure 2.17 illustrates the wiring between the FACP’s Primary ANN-BUS and ANN-BUS devices.

![Primary ANN-BUS wiring to ANN-BUS Device](image1)

Figure 2.17 Primary ANN-BUS wiring to ANN-BUS Device

Figure 2.18 illustrates the wiring between the FACP’s Secondary ANN-BUS and ANN-BUS devices.

![Secondary ANN-BUS wiring to ANN-BUS Device](image2)

Figure 2.18 Secondary ANN-BUS wiring to ANN-BUS Device

Powering Both ANN-BUS Circuits Simultaneously

When simultaneously using the Primary and Secondary ANN-BUS circuits on the FACP, power can be shared from the Nonresettable Power output on TB1. Alternately, one ANN-BUS can be powered by the Resettable Power output (TB1 Terminals 3 and 4) once it is reconfigured as Nonresettable Power using JP6. This provides the benefit of independently acting power-limiting for the two ANN-BUS circuits (required for Canadian applications).
Powering ANN-BUS Devices from an Auxiliary Power Supply

Figure 2.19 illustrates the powering of ANN-BUS devices from an auxiliary power supply such as the FCPS-24FS6/8, when the total ANN-BUS power requirements exceed the panel’s DC Power Output capability.

Figure 2.19 Powering ANN-BUS Devices from FCPS-24FS6/8

ANN-BUS Device Addressing

Each ANN-BUS device requires a unique address (ID Number) in order to communicate with the FACP. A 5-position DIP switch on each device is used to set this address. The address set for these devices must also be programmed at the FACP for the specific device (refer to the programming section titled “ANN-BUS Options” on page 108).

A maximum of 8 devices can be connected to each FACP ANN-BUS communication circuit. Device addresses do not need to be sequential and can be set to any number between 01 and 08. This applies to both ANN-BUS communication circuits. Note that 00 is not a valid address. The following table shows the DIP switch setting for each address.

When installed and enabled through FACP programming, the ANN-LC will always be set to address 08. No dip switch settings are used to set the address on the ANN-LC.

NOTE: Address (ID Number) DIP switches on some devices may have more than 5 switch positions. Unless otherwise specified in the documentation supplied with each device, switch positions 6 and above must be set to **OFF**.
Switch 5 must be set to OFF for ANN-BUS devices to be recognized.

ANN-80 Remote Fire Annunciator

- **Specifications**
 - Operating Voltage Range: 18 VDC to 28 VDC
 - Current Consumption @ 24 VDC nominal (filtered and nonresettable):
 - Normal/Standby (no activity): 37.0 mA
 - Trouble: 39.0 mA
 - Alarm: 40.0 mA
 - AC Fail (not backlit): 15.0 mA
 - For use indoors in a dry location

- **Installation**
 Ensure that all power (AC and DC) has been removed from the FACP before installing the annunciator.

- **Opening/Closing Annunciator**
 The following procedure details the steps used to open the annunciator in order to access the terminal block and DIP switches (refer to figure below):
 1. Turn the key switch to the ON (Unlocked) position by turning the key counter-clockwise.
 2. Push in the snap latch located on the right side of the unit while pulling the cover open.
 3. To close the cover, make certain the key switch is in the ON (Unlocked) position. Swing the cover closed, snapping it shut.
4. Turn the key switch to the OFF (Locked) position by turning clockwise and remove the key.

Mounting

The ANN-80 can be surface or semi-flush mounted to a single, double or 4” square electrical box. Select and remove the appropriate knockout(s), pull the necessary wires through the knockouts and mount the annunciator in or on the wall depending on the type of installation desired.

The ANN-SB80KIT(-R/-B/-W) is an available mounting kit for the ANN-80 annunciator. The kit comes with a surface backbox and surface wedge for angled viewing. The two pieces can be used separately or can be stacked together.

The ANN-80 cover must be attached to the annunciator backplate before mounting the annunciator to the electrical box/wall. The cover cannot be reattached or removed after the annunciator has been mounted.
■ Wiring ANN-80 to FACP

The following steps can be used as a guide to wire the annunciator. Make certain all power has been removed from the FACP prior to annunciator installation.

1. Route wires from hole in backplate, through wiring channel and then to ANN-80 terminal block TB1

2. Remove appropriate amount of wire insulation

3. Connect the wiring from the FACP ANN-BUS to annunciator TB1 terminals 3 (A) & 4 (B). Make certain to connect A to A and B to B

4. If appropriate, connect the wiring going to the next device on the ANN-BUS to TB1 terminals 3 & 4. Make certain to connect A to A and B to B

5. Connect the wiring from the 24 VDC power source to annunciator TB1 terminals 1 (-) & 2 (+). Make certain to observe proper polarity

6. If appropriate, connect the power wiring going to the next device to terminals 1 (-) & 2 (+). Make certain to observe proper polarity

7. After all connections are made, remove extra wire from inside of annunciator by dressing it neatly through wire channel, with any excess wire pushed back through hole into electrical box

ANN-BUS and power wiring are supervised and power-limited

Figure 2.20 ANN-80 Wiring to FACP
The following table shows the ANN-80 connections to the MS-9200UDLS.

<table>
<thead>
<tr>
<th>MS-9200UDLS</th>
<th>ANN-80 (TB1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal GND (-) on TB1</td>
<td>Terminal 1 (-)</td>
</tr>
<tr>
<td>Terminal PWR (+)TB1</td>
<td>Terminal 2 (+)</td>
</tr>
<tr>
<td>Terminal Data (A) on TB9</td>
<td>Terminal 3 (A)</td>
</tr>
<tr>
<td>Terminal Data (B) on TB9</td>
<td>Terminal 4 (B)</td>
</tr>
</tbody>
</table>

Programming

Following installation and wiring of the ANN-80 LCD annunciator to the FACP, the annunciator must be added to the system via FACP programming. Refer to the programming section titled “ANN-BUS Options” on page 108 in this manual for detailed programming information. Select the LCD option for programming.

Trouble Response

If the ANN-80 is installed but the ANN-BUS is not enabled at the FACP, the ANN-80 will indicate a trouble condition by NOT turning on its AC Power indicator. The LCD will also display *Key Bus Trouble* and the piezo will sound approximately once every 10 seconds. Note that the FACP will provide no indication of an ANN-80 trouble.

To clear the ANN-80 trouble condition, enable the ANN-BUS and program the address corresponding to the address set on the ANN-80 at the FACP.

ANN-S/PG Serial/Parallel Interface Module

Installation

1. Ensure that all power (AC and DC) has been removed from the FACP.
2. Connect the ANN-S/PG to the FACP as illustrated in Figure 2.21
3. Using the DIP switches on the back of the ANN-S/PG module, assign an ID number (address) to the module.
4. Select the address and configuration options for the ANN-S/PG module as described in the Programming section of this manual (refer to “ANN-BUS Options” on page 108). Note that the Auto-configure feature allows the programmer to quickly bring all installed ANN-BUS modules online (refer to “Auto-Configure” on page 117).
5. Connect a printer to the ANN-S/PG Parallel or Serial connectors (refer to Figure 2.21). Only one printer can be connected.

Specifications
- **Operating Voltage:** 24 VDC
- **Current (Alarm and Standby):** 45 mA
- **Ambient Temperature:** 32°F to 120°F (0°C to 49°C)
- **Max. Wiring Distance from FACP:** 6,000 ft. (1,800 m)
- **Mounting:** Surface
- **Dimensions:** 6”W x 7-3/4”H x 1-7/16”D (15.2 cm W x 19.7 cm H x 3.7 cm D)
- **For indoor use in a dry location only**

Connecting a PRN-7 Printer
Remote printers require a primary AC power source. If required for the fire alarm system configuration (for example, a Proprietary Fire Alarm System), a remote printer requires a secondary power source (battery backup). Since a secondary power source is not provided as a standard feature, a separate UL-listed Uninterruptible Power Supply (UPS) should be used. The building emergency power supply may be used, as long as it meets the power continuity requirements of NFPA 72. Refer to NFPA 72 for further details.

Connect the remote printer to the FACP via the ANN-S/PG module using a standard DB-9 cable. One end of the cable will plug into the DB-9 connector on the PRN-7 printer and the other end plugs into the serial connector on the ANN-S/PG module.

Setting Printer Options
Refer to the documentation supplied with the PRN-7 printer for instructions on using the printer menu controls. Set the printer options (under the menu area) as shown in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Setting</th>
<th>Option</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>HS Draft</td>
<td>CPI</td>
<td>10CPI</td>
</tr>
<tr>
<td>LPI</td>
<td>6 LPI</td>
<td>Skip</td>
<td>0.5</td>
</tr>
<tr>
<td>ESC Character</td>
<td>ESC</td>
<td>Emulate</td>
<td>LQ-2550</td>
</tr>
<tr>
<td>Bidirectional Copy</td>
<td>ON</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>CG-TAB</td>
<td>Graphic</td>
<td>Buffer</td>
<td>64K</td>
</tr>
<tr>
<td>Country</td>
<td>E-US ASCII</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>Auto CR</td>
<td>OFF</td>
<td>Baud</td>
<td>9600 or 2400</td>
</tr>
<tr>
<td>Color Option</td>
<td>Not Installed</td>
<td>Format</td>
<td>7 Bit, Even, 1 Stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protocol</td>
<td>XON/XOFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Character Set</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI.Zero</td>
<td>On</td>
</tr>
<tr>
<td>Lines</td>
<td>6LPI=60</td>
<td>Auto LF</td>
<td>On</td>
</tr>
<tr>
<td>Standard</td>
<td>Exec 10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcode</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcode</td>
<td>Unsecured</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2 PRN-7 Setup Options

PRN-6F Printer Installation
When connected to the FACP via the ANN-S/PG module, the PRN-6F prints the status changes within the control panel and time-stamps the printout with the time of day and date that the event occurred. It provides 80 columns of data on standard 9” x 11” tractor-feed paper. This section contains information on connecting a printer to the control panel and setting the printer options.
Connecting PRN-6F Printer

Remote printers require a primary AC power source. If required for the fire alarm system configuration (for example, a Proprietary Fire Alarm System), a remote printer requires a secondary power source (battery backup). Since a secondary power source is not provided as a standard feature, a separate UL-listed Uninterruptible Power Supply (UPS) should be used. The building emergency power supply may be used, as long as it meets the power continuity requirements of NFPA 72. Refer to NFPA 72 for further details.

Connect the remote printer to the FACP via the ANN-S/PG module using a standard DB-25 cable. One end of the cable will plug into the DB-25 connector on the PRN printer and the other end plugs into the parallel connector on the ANN-S/PG module. Note that the 9-pin DB-9 port on the ANN-S/PG is used to connect a serial printer. The 25-pin port is used for a Centronics parallel printer cable. Connect either a serial or parallel printer, but not both at the same time.
Setting Printer Options

Refer to the documentation supplied with the PRN-6F printer for instructions on using the printer menu controls. Set the printer options (under the menu area) as shown in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Setting</th>
<th>Option</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>HS Draft</td>
<td>CPI</td>
<td>10CPI</td>
</tr>
<tr>
<td>LPI</td>
<td>6 LPI</td>
<td>Skip</td>
<td>0.5</td>
</tr>
<tr>
<td>ESC Character</td>
<td>ESC</td>
<td>Emulate</td>
<td>Epson FX-850</td>
</tr>
<tr>
<td>Bidirectional Copy</td>
<td>ON</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>CG-TAB</td>
<td>Graphic</td>
<td>Buffer</td>
<td>40K</td>
</tr>
<tr>
<td>Country</td>
<td>E-US ASCII</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>Auto CR</td>
<td>OFF</td>
<td>Baud</td>
<td>9600 or 2400</td>
</tr>
<tr>
<td>Color Option</td>
<td>Not Installed</td>
<td>Format</td>
<td>7 Bit, Even, 1 Stop</td>
</tr>
<tr>
<td>Formien</td>
<td></td>
<td>Protocol</td>
<td>XON/XOFF</td>
</tr>
<tr>
<td>Lines</td>
<td>6LPI=60</td>
<td>Character Set</td>
<td>Standard</td>
</tr>
<tr>
<td>Standard</td>
<td>Exec 10.5</td>
<td>Sl.Zero</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auto LF</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAPER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIN 1</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIN 2</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SINGLE</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PUSH TRA</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PULL TRA</td>
<td>12/72"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAP ROLL</td>
<td>12/72"</td>
</tr>
</tbody>
</table>

Table 2.3 PRN-6F Setup Options
ANN-I/O LED Driver Module

- ANN-I/O Board Layout

Figure 2.22 illustrates the ANN-I/O board showing locations of screw terminals for connection to the FACP, pin connectors for connecting LEDs and the DIP switch for selecting the ANN-BUS ID number.

![ANN-I/O Board Layout](ann-iobrd2.wm)

Figure 2.22 ANN-I/O Board Layout

- **Specifications**
 - Max. ANN-BUS Voltage: 28 VDC
 - Max. Current:
 - Alarm: 200 mA
 - Standby: 35 mA
 - Each LED: 10 mA
 - Operating Temperature: 32°F to 120°F (0°C to 49°C)
 - For indoor use in a dry location only
Optional Module Installation

- **ANN-I/O Connection to FACP**

 The ANN-I/O connects to the FACP via the ANN-BUS as illustrated in Figure 2.23. After the ANN-I/O is connected to the panel, it must be added to the system via FACP programming. Refer to the section titled “ANN-I/O Options” on page 109.

- **ANN-I/O Module LED Wiring**

 There are four 12-pin connectors on the ANN-I/O module for connecting LEDs. Each set of 10 LEDs get their power from Pin 11 of the corresponding connector. Internal resistors are sized so that there is approximately 10 mA of current for each LED. No series resistors are required. LED outputs can be mapped to output circuits. Refer to the programming section titled “ANN-I/O Options” on page 109 of this manual.

 The LEDs are wired as illustrated in Figure 2.24. Note that the illustration depicts only connectors P1 and P2. Wiring is identical for P3 (LEDs 21-30) and P4 (LEDs 31-40).
ANN-LED Annunciator Module

Figure 2.24 ANN-I/O LED Wiring

Figure 2.25 ANN-LEDs (shown in possible stacked configuration)
 ■ Specifications

- Max. ANN-BUS Voltage: 24 VDC
- Max. Current:
 - Alarm: 68 mA
 - Standby: 28 mA
- Operating Temperature: 32°F to 120°F (0°C to 49°C)
- For indoor use in a dry location only

■ Mounting/Installation

The ANN-LED Module is supplied with a metal backbox, mounting bracket, and cover. Refer to the ANN-LED Installation Document #53032 for more information.

Figure 2.26 Exploded View of ANN-LED
ANN-LED Board Layout and Connection to FACP

Figure 2.27 illustrates the ANN-LED board showing locations of screw terminals for connection to the FACP and the DIP switches for selecting the ANN-BUS ID number.

ANN-RLY Annunciator Module

- **Specifications**
 - Operating Voltage: 24 VDC
 - Max. Current:
 - Alarm: 75 mA
 - Standby: 15 mA
 - Operating Temperature: 32°F to 120°F (0°C to 49°C)
 - For indoor use in a dry location only
Mounting/Installation

The ANN-RLY relay module can be mounted inside the FACP main circuit board chassis or inside the ROME Series enclosure. Refer to the ANN-RLY Installation Document #53033 for instructions on chassis mounting or to the ROME Series Installation Document #53530 for mounting in the separate backbox.

FACP Chassis Installation

FACP Backbox Installation using ANN-MBRLY mounting bracket

ROME Series Installation using ANN-MBRLY mounting bracket

Figure 2.28 ANN-RLY Mounting Options
ANN-RLY Board Layout and Connection to FACP

Figure 2.29 illustrates the ANN-RLY board showing locations of screw terminals for connection to the FACP and the DIP switches for selecting the ANN-BUS ID number.

ANN-RC Lite-Connect Module

Specifications

- **Operating Voltage:** 24 VDC
- **Max. Current:** 150 mA
- **Operating Temperature:** 32°F to 120°F (0°C to 49°C)
- **For indoor use in a dry location only**

Installation

Ensure that all power (AC and DC) has been removed from the FACP before installing the communication module.
Mounting

The ANN-LC mounts inside the FACP cabinet. Slide the two tabs of the bracket into the backbox protrusions on the lower right side. Secure with the included self-tapping screw. Refer to the *ANN-LC Product Installation Document* for more information.

Wiring the ANN-LC to the Panel

The ANN-LC connects to the MS-9200UDLS via the FACP’s secondary ANN-BUS. Connect non-resettable power at TB1 on the MS-9200UDLS to TB1 on the ANN-LC. Connect the secondary ANN-BUS of the MS-9200UDLS at TB8 to TB1 on the ANN-LC.

Programming

Following installation and wiring of the ANN-LC module to the FACP, the module must be added to the system via FACP programming. Select the LCD option for system programming. Refer to the programming section titled “Lite-Connect” on page 102 in this manual for detailed programming information.

2.9.3 Printer

A serial printer may be connected to TB8 Terminals 1 - 4 on the FACP when TB8 is not being used for annunciators or a local PC connection. The printer can be used to provide a hard-copy printout of real-time events, history file and walktest data. Installation the device requires panel programming to allow the FACP to communicate with the device.
A parallel printer may also be connected to the FACP using the optional ANN-S/PG Serial/Parallel Interface Module. Refer to “ANN-S/PG Serial/Parallel Interface Module” on page 24 for installation details. Refer to “ANN-BUS Options” on page 108 for programming information.

CAUTION: POSSIBLE EQUIPMENT DAMAGE
DO NOT CONNECT A PRINTER OR PC TO THE MS-9200UDLS FACP IF A GROUND FAULT (ZERO IMPEDANCE TO GROUND) EXISTS ON THE CONTROL PANEL. CIRCUIT DAMAGE MAY RESULT. REMOVE ALL POWER (PRIMARY AND SECONDARY) BEFORE INSTALLING OR REMOVING ANY WIRING.

Installation

Serial printers and PCs require separate primary power. Also required is the serial PRT/PK-CABLE which is an interface cable prewired to a DB9F connector. Wire the PRT/PK-CABLE to TB8 Terminals 1 - 4 as illustrated in the following figure. Connect the DB9F connector to the printer or PC serial EIA-232 port. If a nine-pin serial connector is not available on the printer or PC, use a DB25 adapter. Make certain that the DB25 adapter does not swap the Transmit and Receive lines. Apply power to the FACP and printer or PC. Note that a ground fault (zero impedance to ground) may occur on the FACP, dependent on the printer or PC being used, due to this connection. For this reason, it is important that there be no preexisting ground fault on the panel.

Note that the printer may or may not be supervised as determined by user programming. Refer to “Printer/PC” on page 126.

Printer Configuration

Refer to the documentation supplied with the printer for pertinent information about printer setup. Set the printer’s options as listed in the following table:

<table>
<thead>
<tr>
<th>COMMUNICATION SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFFER:</td>
</tr>
<tr>
<td>DATA BITS:</td>
</tr>
<tr>
<td>PARITY:</td>
</tr>
<tr>
<td>STOP BIT:</td>
</tr>
<tr>
<td>Baud Rate:</td>
</tr>
<tr>
<td>Automatic Line Feed:</td>
</tr>
<tr>
<td>Automatic Carriage Return:</td>
</tr>
<tr>
<td>DTR:</td>
</tr>
</tbody>
</table>

Table 2.4 Printer Options
2.9.4 ECC-FFT Firefighter Telephone

The ECC-FFT connects from TB1 (non-resettable aux power) on the FACP to the DC Power input on the ECC-FFT board.

![ECC-FFT Connections](figure2.33)

Figure 2.33 ECC-FFT Connections

2.9.5 W-GATE Wireless Gateway

The W-GATE connects to the FACP’s SLC connection at TB10. The W-GATE can be powered by either the SLC or an external 24 VDC power source. Refer to the *SWIFT™ Smart Wireless Integrated Fire Technology Manual* for more information.

![W-GATE SLC Connection](figure2.34)

Figure 2.34 W-GATE SLC Connection

NOTE: The W-GATE, as part of the wireless network, has been tested for compliance with the Federal Communications Commission (FCC) requirements of the United States Government. It has not been evaluated for use outside the USA. Use of this system outside the USA is subject to local laws and rules to which this product may not conform. It is the sole responsibility of the user to determine if this product may be legally used outside the USA.
2.10 Automatic Audio Panel Control

The FACP annunciator bus serves as the “FACP Data Bus” to the ECC-50/100 or ACC-25/50 audio system. User programming is required to set up the operation of the audio system. To set up the annunciator bus, refer to Section 2.9.2 on page 41. The annunciator protocol, ANN-Bus or legacy ACS-Bus, must be selected and enabled. Note that only one of the protocols may be enabled in the system. Refer to “Guidelines” on page 23 for conditions when using the ANN-Bus.

When using the ACS-Bus protocol, ACS address 01 must be enabled in the FACP programming.

When using the ANN-Bus protocol, the FACP will automatically detect the audio system connection during annunciator “auto-configuration”. No ANN-Bus address selection is necessary at the FACP.

Once the FACP can communicate with the audio system, FACP zones Z33 through Z56 become automatically dedicated as output zones for speaker circuits 1 through 24 respectively. FACP zone Z32 is dedicated to turn on all speaker circuits. FACP programming allows association between any addressable SLC input device (module, detectors) with any of the speaker circuits. In addition 1 of 14 messages (1 of 5 using the legacy ACC panel) can be generated over the selected speaker circuit. Any fault in the ECC-50/100 audio system is sent to the FACP via the FACP Data Bus and is indicated as an annunciator fault on the FACP display. A fault at the ACC-25/50ZS Series panel will cause the FACP to indicate a System Trouble and the display will indicate a Voice Evac Fault.

For speaker circuit mapping and audio message assignment, refer to “Zone Message” on page 91. Also, refer to “Programmed Activation by FACP” in chapter 3 of the ECC-50/100 Instruction Manual (Doc. LS10001-000FL-E) or Appendix D, “Programmed Activation by FACP” in the ACC-25/50ZS Series Instruction Manual (Doc. 51889).

Connect the ECC-50/100 panel’s FACP Data Bus at TB13 to TB9 on the MS-9200UDLS FACP.

Figure 2.35 FACP Connection to ECC-50/100 Series Audio Panel
The only connection between the FACP and ACC-25/50ZS Series audio panel is a pair of communication wires connected between the A(+)B(-) terminals on TB9 of the FACP and TB1 terminals 2 & 3 of the ACC-ZPMK module on the audio panel.

Figure 2.36 FACP Connection to ACC-25/50ZS(T) Series Audio Panel (Legacy)
Section 3: Programming

3.1 Programming Data Entry

Programming can be accomplished using the MS-9200UDLS keypad or by connecting an optional standard computer keyboard. The keyboard can be connected to the PS-2 connector J3 on the control panel main circuit board.

The information presented in this section refers to programming the MS-9200UDLS via the onboard keypad. If an optional computer keyboard is connected to the MS-9200UDLS main circuit board, the following table describes the keyboard keys which correspond to the onboard keypad keys.

<table>
<thead>
<tr>
<th>Keypad Keys</th>
<th>Computer Keyboard Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Event</td>
<td>Home</td>
</tr>
<tr>
<td>CLR</td>
<td>Delete</td>
</tr>
<tr>
<td>ESC</td>
<td>Esc</td>
</tr>
<tr>
<td>RECALL</td>
<td>Insert</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>A - Z</td>
<td>A - Z</td>
</tr>
<tr>
<td>0 - 9</td>
<td>0 - 9</td>
</tr>
<tr>
<td>■ (on QZ key)</td>
<td>Space bar</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>ENTER</td>
<td>Enter</td>
</tr>
<tr>
<td>ACK/STEP</td>
<td>F1</td>
</tr>
<tr>
<td>SILENCE</td>
<td>F2</td>
</tr>
<tr>
<td>DRILL</td>
<td>F3</td>
</tr>
<tr>
<td>RESET</td>
<td>F4</td>
</tr>
</tbody>
</table>

NOTICE TO USERS, INSTALLERS, AUTHORITIES HAVING JURISDICTION AND OTHER INVOLVED PARTIES

This product incorporates field-programmable software. In order for the product to comply with the requirements in the Standard for Control Units and Accessories for Fire Alarm Systems, UL 864, certain programming features or options must be limited to specific values or not used at all as indicated below:

<table>
<thead>
<tr>
<th>Program feature or option</th>
<th>Permitted in UL 864? (Y/N)</th>
<th>Possible settings</th>
<th>Settings permitted in UL 864</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trouble Call Limit</td>
<td>N</td>
<td>Refer to “Trouble Call Limit (Dialer Runaway Prevention)” on page 121. Trouble Call Limit = 0 (factory default): unlimited calling to Central Station for any trouble condition Trouble Call Limit = 1 - 99: limits call for each unique trouble to from 1 to 99 within a 24 hour period</td>
<td>Trouble Call Limit = 0 for unlimited Central Station trouble calls</td>
</tr>
<tr>
<td>Remote Download</td>
<td>Y</td>
<td>Remote Download - Proprietary No Remote Download - Proprietary Yes</td>
<td>Remote Download Proprietary Yes for Proprietary system intended to protect only contiguous properties</td>
</tr>
</tbody>
</table>
3.2 User Programming

The MS-9200UDLS is completely field programmable and requires no special software skills. While programming the MS-9200UDLS, the fire protection capabilities of the control panel are enabled.

Site-specific programming may be accomplished in any of the following ways:

- **Autoprogramming Feature** - This is a convenient method for quickly bringing the FACP addressable SLC devices on-line without the necessity of programming each device individually. Refer to “Autoprogram” on page 67 for a detailed description of Autoprogramming.

- Manual programming or editing, using the FACP keypad or a PC keyboard

- Remote Programming and Editing Feature - allows creation and editing of site-specific custom programs using a Windows-based computer and modem. For programs requiring a large amount of data entry, this method may be preferred. A PK-CD programming CD-ROM can be ordered for this purpose.

- Local Programming and Editing Feature - allows creation and editing of site-specific custom programs using a Windows-based computer and the FACP USB connection. For programs requiring a large amount of data entry, this method may be preferred. A PK-CD programming CD-ROM can be ordered for this purpose.

The System All Normal screen will be displayed in a programmed system with no active alarms, troubles or supervisories, as illustrated below:

```
SYSTEM ALL NORMAL
10:00A 012106
1=READ STATUS MODE
2=PROGRAMMING MODE
3=REMOTE DOWNLOAD
```

Read Status mode can be entered while the panel is in any mode of operation. If an alarm or supervisory event exists at the panel, the event must be cleared before entering Programming mode. To access any of the programming or read status features, the Enter or Mode key must be pressed, which will cause the LCD to display the following:

```
1=READ STATUS MODE
2=PROGRAMMING MODE
3=REMOTE DOWNLOAD
```

Pressing 1, while this screen is being displayed, will cause the control panel to enter the Read Status Mode which allows the user to view the programmed features and status of the control panel. The Read Status feature is not password protected. Refer to “Read Status” on page 145 for a detailed description of this feature.

Pressing 2 will select user Programming Mode which may only be accomplished by an authorized person. After pressing 2, a screen will prompt for a password. After entering the correct password, the user may select from a list of programming options.

Pressing 3 will select Remote Download which allows the user to enable the remote programming option. Refer to “Remote Site Upload/Download” on page 157.

Exit Programming, Read Status

The programmer can exit any mode by repeatedly pressing the keypad ESC (Escape) key until the display reads System All Normal. Note that the data which is entered during Programming mode is not saved until the programmer exits this mode by repeatedly pressing the ‘ESC’ key. If the Reset key is pressed or power is lost before exiting Programming mode, all data just entered will be lost.
User Programming Levels

There are two user programming levels:

- User Master Program Level 1 is used for programming panel specific data relating to device types, zoning, messages, control panel functions, etc.
- User Maintenance Program Level 2 is used by a qualified operator to access features such as Disable/Enable, View and Clear History, Walktest and System Time Change.

3.3 Initial Power-up

The following sections describe the initial programming procedures for a new system. The same procedures are used to modify programming in an existing system.

After completing the wiring of addressable devices to the SLC, apply power to the control panel. If the addressable devices have not yet been programmed into the FACP, their LEDs will not flash and the following trouble message will be displayed.

3.4 Programming Screens Description

The options available when the Enter key is pressed are: Read Status, Programming. The Read Status and Programming options have multiple functions or features which may be chosen. To view all of the choices, it is necessary that the programmer scroll through a number of additional subscreens. These selections are displayed on multiple screens to make them more readable for the programmer. Refer to “Master Programming Level” on page 67, for additional information on the various screens.

The title of the main option screen will always be displayed at the top of the subscreens for the programmer’s convenience. If additional subscreens exist, an Up or Down arrow will be displayed in the upper right corner of the screen being viewed. The programmer can then press the keypad Up or Down arrow key to view the new subscreen. To select one of the choices in a screen, the programmer presses the keypad numerical key corresponding to the desired choice.

Note that subscreens may also have multiple options which require viewing more than one screen. The same process, as detailed in the previous paragraphs, is followed to view all option choices.

3.5 Programming and Passwords

There are two factory set programming passwords which will access the Programming screens as indicated in the following examples. From either of the screens, access to specific system and device features or programming may be obtained. All user programming entries are stored in non-volatile memory. The factory set passwords can be changed by the user as described in “Password Change” on page 126. If an invalid password is entered, the blinking cursor will return to the first password character position. To exit Programming or Read Status mode at any time, press the ESC (Escape) key repeatedly. Note that Programming mode must be exited using the ESC key in order to store the program data entered during this mode. If the Reset key is pressed or power is lost before exiting Programming mode, the data just entered will not be saved.

To access user Programming mode, press the Enter or Mode key. The LCD will display the following.
To enter the user Programming mode, press 2. The display will read as follows:

![Programming Mode](image)

Entering the **Master** level password (default 00000) will cause the following screen to appear:

![Master Level](image)

If the **Maintenance** level password (default 11111) is entered, the following screen will appear:

![Maintenance Level](image)

Note that in the two preceding screens, an arrow appears to inform the programmer that additional options can be viewed by pressing the keypad down arrow key.

3.6 Master Programming Level

When the Master Program Level password is entered, the control panel will enter user Programming mode. In this mode, the piezo sounder remains off, the trouble relay is activated and the system Trouble LED flashes until Programming mode is exited. The following display will appear:

![Programming Mode](image)

The down arrow which appears in the display indicates that additional programming choices can be viewed by pressing the down arrow key on the keypad. If a down and up arrow appear in the display, pressing the ‘down’ arrow key will display the subsequent Programming Screens as illustrated below while pressing the ‘up’ arrow key will display the previous screen.

![Programming Screens](image)

3.6.1 Autoprogram

Pressing 1 while viewing Programming Screen #1, will select the Autoprogram option, which prompts the control panel to poll all devices installed on the SLC loop. The primary purpose of autoprogramming is to allow the installer a fast and easy way to bring the system on-line as quickly as possible. The first time the system is powered-up, it should be autoprogrammed.

If the system is already programmed and Autoprogram is initiated, the system will only add default values for newly installed devices.
When Autoprogram is selected, the control panel will begin autoprogramming the system by communicating with each addressable device installed on the SLC loop. While autoprogramming, the panel will display the following:

![Autoprogram Progress Screen](image)

When Autoprogramming is completed, the control panel will display the type and quantity of each device installed on the SLC loop similar to the following display:

![Autoprogram Result Screen #1](image)

In the preceding example, the display indicates that the SLC Loop has 55 addressable detectors, 35 monitor modules and 30 control modules installed.

Pressing the **ESC** key will return the display to Programming Screen #1.

3.6.2 Point Program

The Point Program option allows the programmer to add a new addressable device to an SLC loop, delete an existing device from a loop or change the programming for an existing device. Pressing 2, while viewing Programming Screen #1, will select the Point Program option and display the following screen:

![Point Program Screen](image)

Detector Programming

Pressing 1, while viewing the Point Program Screen, will allow the programmer to add, delete or change the programming of an addressable detector. The following screen will be displayed by the control panel:

![Detector Screen](image)

- **Add Detector**

Pressing 1 while viewing the Detector Screen will display the following screen which allows the programmer to add a new detector address to programming:

![Add Detector Screen](image)

A flashing cursor will appear in the position of the first asterisk to the left. The programmer keys in the three digit detector address, such as 005.
When the last digit is keyed-in, the following screen will be displayed:

Press the down arrow key to view additional choices. Press the number corresponding to the desired selection to program that type to the newly added detector.

When the type has been selected, the following screen will be displayed:

The programmer can continue adding detectors by pressing the ESC key which will return the display to the Add Detector Screen.

- **Delete Detector**

Pressing 2 in the Detector Screen will display the Delete Detector Screen which allows the programmer to delete a specific detector:

A flashing cursor will appear in the position of the first asterisk to the left. The programmer keys in the three digit detector address, such as 005. When the last digit is keyed-in, the following screen will be displayed:

The programmer can continue deleting detectors by pressing the ESC key which will return the display to the Delete Detector Screen.

- **Edit Detector**

The programmer can change a detector's existing or factory default programming by pressing 3 in the Detector Screen. The following screen will be displayed:

A flashing cursor will appear in the position of the first asterisk to the left. The programmer keys in the three digit detector address, such as 017.

When the last digit is keyed-in, if the selected address has not been added to programming, a screen showing information about a device that is installed with a lower address, closest to the selected address, will be displayed.
If no detectors have been installed on the loop, the following will be displayed:

![NO DETECTOR INSTALLED](image)

Edit Detector Screen #1

If the selected address has been added to programming, device summary screens will be displayed. These screens allow the programmer to view all device settings at a single glance. Pressing the left or right arrow keys will allow the programmer to rapidly view the devices at the previous or next address (if installed).

If a detector (such as a photoelectric detector) with the selected address is not physically installed on the SLC or has a communication fault but the address is programmed in the system, the following screen will be displayed:

![TROUBL SMOKE(PHOTO) <ADJ><NOUN> ZNNN * 1D017](image)

Edit Detector Screen #1

If the selected address has been added to programming and a detector (such as a photoelectric detector) with the selected address is physically installed on the SLC and is communicating with the control panel, the following will be displayed:

![NORMAL SMOKE <PHOTO> <ADJ><NOUN> ZNNN V 1D017](image)

Edit Detector Screen #1

To change the programming for the displayed detector, press the keyboard ‘down’ arrow key to view the Edit Detector screens.

In the preceding example:

- Normal - indicates that the detector with the selected address is physically installed on the SLC and communicating with the control panel (enabled)
- <ADJ><NOUN> - represents the adjective and noun, which have been programmed, describing the location of the displayed device
- ZNNN - represents the first of five possible software zones that the detector is assigned to (NNN = the three digit zone number from 000 - 099)
- V or * - indicates whether or not alarm verification is enabled (V = alarm verification enabled and * = alarm verification disabled)
- 1D017 - represents the Loop, Device type and Device address (1 = SLC Loop, D=Detector and 017 = Detector Address 017)

The following examples show the editing of a photoelectric smoke detector with address 017, located on the SLC loop:

![EDIT DETECTOR 1D017 1=ENABLED YES 2=TYPE SMOKE(PHOTO) 3=VERIFICATION OFF](image)

Edit Detector Screen #2

![EDIT DETECTOR 1D017 1=WALKTEST NO 2=PAS NO 3=PRE-SIGNAL NO](image)

Edit Detector Screen #3

![EDIT DETECTOR 1D017 1=ZONE ASSIGNMENT 00 *******](image)

Edit Detector Screen #4

![EDIT DETECTOR 1D017 1=NOUN/ADJECTIVE 2=DESCRIPTION *******](image)

Edit Detector Screen #5
Enable/Disable Detector

To Enable or Disable the detector, press the 1 key while viewing the Edit Detector Screen #2. Each press of the key will toggle the screen between Enabled Yes and Enabled No. If Enabled No is selected, the detector will not be polled by the control panel, preventing the detector from reporting alarms and troubles to the panel. The control panel will display the device type and address which has been disabled and will turn on the Trouble LED and Disable LED.

Type

To select the type of detector being programmed, press the 2 key while viewing the Edit Detector Screen #2. This will cause the control panel to display the following Detector Type Screens:

Pressing the down arrow key will display additional detector types as indicated in the following table.

<table>
<thead>
<tr>
<th>Detector Type</th>
<th>Action When Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoke Photo</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-1</td>
<td>same as previous (Smoke Photo)</td>
</tr>
<tr>
<td>Smoke Ion</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-2</td>
<td>same as previous (Smoke Ion)</td>
</tr>
<tr>
<td>Heat Detect</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-3</td>
<td>same as previous (Heat Detect)</td>
</tr>
<tr>
<td>Smoke DuctP</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-4</td>
<td>same as previous (Smoke DuctP)</td>
</tr>
<tr>
<td>Photo w/Heat</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-5</td>
<td>same as previous (Photo w/Heat)</td>
</tr>
<tr>
<td>Duct-Superv</td>
<td>Supervisory, latching</td>
</tr>
<tr>
<td>User-Defined-6</td>
<td>same as previous (Superv DuctP)</td>
</tr>
<tr>
<td>Photo-SupervAR</td>
<td>Supervisory, nonlatching (works only in LiteSpeed)</td>
</tr>
<tr>
<td>User-Defined-7</td>
<td>same as previous (Photo-SupervAR)</td>
</tr>
<tr>
<td>ADAPT</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-8</td>
<td>same as previous (ADAPT)</td>
</tr>
<tr>
<td>Beam</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-9</td>
<td>same as previous (Beam)</td>
</tr>
</tbody>
</table>

While viewing either Detector Type screen, select the type of detector being programmed by pressing the corresponding keyboard number key. The display will return to Edit Detector Screen #2 and indicate the selection next to the Type option.

NOTE: If a detector is selected to be a SUPERV DUCTP type, it will function like a supervisory point not a fire alarm point. The supervisory LED and supervisory relay will activate, not the fire alarm LED or alarm relay, if the detector senses smoke.

Verification

Alarm verification is used to confirm that a smoke detector activation is a true alarm condition and not a false alarm. This feature is selected by pressing 3 while viewing the Edit Detector Screen #2 so that the display reads Verification On. Each time the 3 key is pressed, the display will toggle between Verification On and Verification Off. For a detailed description, refer to “Alarm Verification (None or One Minute)” on page 144.
Walktest

The Walktest feature allows one person to test the system devices without the necessity of manually resetting the control panel after each device activation. To enable a device for the Walktest feature, press 1 while viewing the Edit Detector Screen #3 until the display reads Walktest Yes. Each press of the 1 key will cause the display to toggle between Walktest Yes and Walktest No. Refer to “Walktest” on page 145.

PAS

The PAS (Positive Alarm Sequence) option will program the detector to delay panel activation (including alarm relay and communicator) for a period of 15 seconds plus a programmable time of up to 3 minutes. Zone 97, however, will activate immediately and may be used to connect a signaling device to indicate PAS activation (do not use a Notification Appliance Circuit for this purpose). To enable the PAS feature, press 2 while viewing the Edit Detector Screen #3 until the display reads PAS Yes. Each press of the 2 key will cause the display to toggle between PAS Yes and PAS No. Refer to “Positive Alarm Sequence” on page 143.

For example, if a detector with address 005 is to be configured for PAS operation:

✔ Select PAS Yes when editing the detector set to address 005
✔ Program the desired zone or zones to be activated by this detector, in this example Z001
✔ Program an output, such as a control module that is to be activated by detector 005 by assigning the same zone to it; in this example Z001
✔ Program an output, such as a control module, for PAS activation by assigning zone Z97 to it. This control module may be connected to a signaling device used to indicate a PAS condition (do not use a Notification Appliance Circuit for this purpose)
✔ Enable zones Z001 and Special Purpose Zone PAS 97 and set the PAS delay timer to some value

With the preceding program settings, when the detector with address 005 is activated, zone Z97 will cause its associated control module to activate immediately, sounding the connected PAS signaling device. Following the PAS delay time, zone Z001 will cause its associated control module to activate and the control panel will initiate an alarm condition.

Note that a detector can be enabled for either PAS or Pre-signal but not both

Pre-signal

The Pre-signal option programs the detector to delay panel activation for a preprogrammed time delay of up to three minutes while allowing for visual verification by a person. Note that the alarm relay and communicator will respond to the initial alarm immediately. In addition, Zone 98 will activate. This zone can be programmed to a control module which may be used to activate a sounder or indicator which the installer designates as a Presignal indication (do not use a Notification Appliance Circuit for this purpose). To enable the Pre-signal feature, press 3 while viewing Edit Detector Screen #3 until the display reads Pre-signal Yes. Each press of the 3 key will cause the display to toggle between Pre-signal Yes and Pre-signal No. Refer to “Presignal” on page 142.

For example, if a detector with address 005 is to be configured for Pre-Signal operation:

✔ Select Pre-signal Yes when editing the detector set to address 005
✔ Program the desired zone or zones to be activated by this detector, in this example Z001
✔ Program an output, such as a control module that is to be activated by detector 005 by assigning the same zone to it; in this example Z001
✔ Program an output, such as a control module, for Pre-signal activation by assigning zone Z98 to it. This control module may be connected to a signaling device used to indicate a Pre-signal condition (do not use a Notification Appliance Circuit for this purpose)
✔ Enable zones Z001 and Special Purpose Zone Pre-signal 98 and set the Pre-signal delay timer to some value
With the preceding program settings, when the detector with address 005 is activated, zone Z98 will cause its associated control module to activate immediately, sounding the connected signaling device to indicate the Pre-signal condition. Following the Pre-signal delay time, zone Z001 will cause its associated control module to activate and the control panel will initiate an alarm condition.

Note that a detector can be enabled for either PAS or Pre-signal but not both.

Zone Assignment

A maximum of five zones can be programmed to each addressable detector. Pressing 1 while viewing Edit Detector Screen #4 displays the following screen:

```
EDIT DETECTOR
1=ZONE ASSIGNMENT
00 00 00 00 00
```

Note that Z** represents the Zone Number(s) corresponding to this device. The factory default for an unprogrammed device is Z00 for general alarm zone. A flashing cursor will appear on the first 0 to the left. Enter the two digit number corresponding to the zone that is to be assigned to this device. The cursor moves to the next Z** designation. Continue entering zone assignments or the remaining zones can be left blank or programmed as general alarm zone Z00. When all desired changes have been made, press the Enter key to store the zone assignments. The display will return to the Edit Detector Screen #4. Note that the left and right arrow keys can be used to navigate through the zones and the CLEAR key can be used to quickly clear a zone.

Noun/Adjective

The Noun/Adjective selection allows the programmer to enter specific descriptors about the detector currently being programmed. Pressing 1 while viewing Edit Detector Screen #5 will cause the following screen to be displayed:

```
EDIT DETECTOR
1=NOUN/ADJECTIVE
```

The Noun/Adjective Screen
Pressing 1 while viewing the Noun/Adjective Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Adjective screens. Press the number corresponding to the adjective that is to be used as a descriptor for the location of the detector currently being programmed. When an adjective has been selected, it will appear at the top of the display as indicated by the asterisks.

Pressing 2 while viewing the Noun/Adjective Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Noun screens. Press the number corresponding to the noun that is to be used as a descriptor for the location of the detector currently being programmed. When a noun has been selected, it will appear at the top of the display as indicated by the asterisks.

Pressing 3 or 4 while viewing the Noun/Adjective Screen will display screens similar to the previous Adjective and Noun Screens. The new screens will list custom Adjectives and Nouns which have been programmed into the control panel using the PS-Tools utility. These descriptors are selected as described in the previous sections.
Description

The Description selection allows the programmer to enter additional information about the detector currently being programmed. This information will be displayed as part of the device label on the display. Pressing 2 while viewing Edit Detector Screen #5 will cause the following screen to be displayed:

A flashing cursor will appear at the first asterisk to the left. The programmer can enter additional descriptive information about the device being programmed. This information will appear on the display along with the standard device label information.

A maximum of 20 characters (including spaces) can be entered. To enter alphanumeric characters from the keypad, repeatedly press the appropriate key until the desired character is displayed in the first position. For example, to enter the letter B, press the 2 (ABC) key three times to toggle through the characters 2, A and B. Press the right arrow key to move the cursor one position to the right and repeat the process to enter the next character. To enter a space, press the * (QZ) key four times until a blank appears in the desired position. When all characters have been entered, press the Enter key to store the information. The display will return to the Edit Detector Screen #5, displaying the new information at the bottom of the screen.

Recall/Increment Function

In addition, the user may use the Recall/Increment function at any time when the cursor is on the first letter of the Description, Adjective or Noun field as follows:

- If the zero key is pressed, a 0 is placed in the first letter position
- If the zero key is then pressed a second time with no intervening key actions, the entire field is replaced with the field entered for the previous device programmed, and the cursor moves to the last character of the field (Recall function). The Recalled Adjective or Noun field may now be changed letter-by-letter
- If the zero key is pressed again with no other intervening key actions and the last character in the field is a number 0-9, the number is incremented by one. If the last character is a letter, it changes to a 0. If the last character is 9 it goes to 0
- The above increment function may be repeated with each press of the zero key

As an example, the user could quickly enter ‘FLR_3_ROOM_305’ as follows:

1. The cursor is on the first letter of the Adjective field. Press the zero key twice to display FLR_3
2. With the cursor on the first letter of the Noun field, press the zero key twice to recall the display ROOM_304. The cursor automatically jumps from the first to the last letter of the Noun field
3. With the cursor on the last letter of the Noun field, press the zero key again to increment the room number to 305
4. Press the right arrow key to advance the zone field
5. Select a zone number from 00 to 99. Z00 (default zone) is the general alarm zone. Z01 through Z99 may be selected to link software zones
Module Programming

Pressing 2, while viewing Point Program Screen #2, will allow the programmer to add, delete or change the programming of an addressable module. The following screen will be displayed by the control panel:

- **Add Module**

Pressing 1 while viewing the Modules Screen will display the following screen which allows the programmer to add a new module address to programming:

A flashing cursor will appear in the position of the first asterisk to the left. The programmer keys in the three digit module address, such as 005.

When the last digit is keyed-in, the following screen will be displayed:

Pressing 1 for Control Module or 2 for Monitor Module will cause the following screen to be displayed:

The programmer can continue adding modules by pressing the ESC or left arrow key which will return the display to the Add Module Screen #1.

- **Delete Module**

Pressing 2 in the Modules Screen will display the Delete Module Screen which allows the programmer to delete a specific module:

A flashing cursor will appear in the position of the first asterisk to the left. Using the panel keypad, key in the module address such as 005. When the last digit is keyed in, the following confirmation that the module has been deleted will be displayed:
Edit Module Screen for Monitor Module

The programmer can change a module’s existing or factory default programming by pressing 3 in the Modules Screen. The following screen will be displayed:

A flashing cursor will appear in the position of the first asterisk to the left. The programmer keys in the three digit module address, such as 012. When the last digit is keyed-in, if the selected address has not been added to programming, a screen showing information about a device that is installed with a lower address, closest to the selected address, will be displayed. If no modules are installed on the loop, the following screen will be displayed:

If the selected address has been added to programming but a module (such as a monitor module) with the selected address is not physically installed on the SLC or has a communication fault, the following screen will be displayed:

If the selected address has been added to programming and a module (such as a monitor module) with the selected address is physically installed on the SLC and is communicating with the control panel, the following screen will be displayed:

To change the programming for the displayed module, press the keyboard down arrow key to view the following Edit Monitor screens. In the preceding example:

- Normal - indicates that the module with the selected address is physically installed on the SLC and communicating with the control panel (enabled)
- `<ADJ>`<NOUN> - represents the adjective and noun, which have been programmed, describing the location of the displayed device
- ZNNN - represents the first of five possible software zones that the module is assigned to (NNN = the two digit zone number from 000 - 099)
- 1M012 - represents the Loop, Device type and Device address (1 = SLC Loop 1, M=Module and 012 = Module Address 012)
- W or * - indicates whether or not the device is programmed for Walktest (W = programmed for walktest, * = not programmed for walktest).

If the selected address corresponds to a control module, a screen displaying information about the control module with the selected address will be displayed as shown in “Edit Module Screen for Control Modules” on page 83.
If the selected address corresponds to a monitor module, a screen displaying information about the module with the selected address will be displayed as illustrated in the following:

![Normal Monitor Screen](image)

Enable/Disable Module

To Enable or Disable the monitor module, press the 1 key while viewing the Edit Module Screen #2. Each press of the key will toggle the screen between Enabled Yes and Enabled No. If Enabled No is selected, the module will not be polled by the control panel, preventing the module from reporting alarms and troubles to the panel. The control panel will indicate a system trouble condition and the Disable LED with turn on if any devices are disabled.

Type Monitor

Using the PS-Tools Upload/Download utility program, unique user-defined monitor types can be created and loaded into the FACP for later use. The FACP response to the activation of a user-defined type is the same as most previous standard types in the list, thus allowing a variety of user-defined types and responses. To select the type of monitor module being programmed, press the 2 key while viewing the Edit Monitor Screen #2. This will cause the control panel to display the following Monitor Type Screens:

![Monitor Type Screen #1](image)

Pressing the down arrow key will display additional Monitor Type screens. While viewing one of the Monitor Type screens, select the type of monitor module being programmed by pressing the corresponding keypad number key. The display will return to the Edit Monitor Screen #2 which will show the new type selection.

Table 3.1 on page 79 lists the Monitor Types and their respective functions.
Monitor module type selection will affect the function of the point as follows:

<table>
<thead>
<tr>
<th>Monitor Type</th>
<th>Action When Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-Station</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-1</td>
<td>same as previous (Pull-Station)</td>
</tr>
<tr>
<td>Waterflow</td>
<td>Fire Alarm Delayed</td>
</tr>
<tr>
<td>User-Defined-2</td>
<td>same as previous (Waterflow)</td>
</tr>
<tr>
<td>Monitor</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-3</td>
<td>same as previous (Monitor)</td>
</tr>
<tr>
<td>Future</td>
<td>not used</td>
</tr>
<tr>
<td>Smoke-Conventional</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-5</td>
<td>same as previous (Smoke-Conventional)</td>
</tr>
<tr>
<td>Heat-Conventional</td>
<td>Fire Alarm</td>
</tr>
<tr>
<td>User-Defined-6</td>
<td>same as previous (Heat-Detector)</td>
</tr>
<tr>
<td>Medic-Alert</td>
<td>General Purpose Signaling, latching</td>
</tr>
<tr>
<td>User-Defined-7</td>
<td>same as previous (Medic-Alert)</td>
</tr>
<tr>
<td>Hazard-Alert</td>
<td>General Purpose Signaling, latching</td>
</tr>
<tr>
<td>User-Defined-8</td>
<td>same as previous (Hazard-Alert)</td>
</tr>
<tr>
<td>Tornado-Alert</td>
<td>General Purpose Signaling, latching</td>
</tr>
<tr>
<td>User-Defined-9</td>
<td>same as previous (Tornado-Alert)</td>
</tr>
<tr>
<td>Phone</td>
<td>Active Phone (LCD display only)</td>
</tr>
<tr>
<td>User-Defined-10</td>
<td>same as previous (Phone)</td>
</tr>
<tr>
<td>Tamper</td>
<td>Supervisory, nonlatching (tracking)</td>
</tr>
<tr>
<td>User-Defined-11</td>
<td>same as previous (Tamper)</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Supervisory, latching</td>
</tr>
<tr>
<td>User-Defined-12</td>
<td>same as previous (Supervisory)</td>
</tr>
<tr>
<td>Supervisory-AR</td>
<td>Supervisory, nonlatching (tracking)</td>
</tr>
<tr>
<td>User-Defined-13</td>
<td>same as previous (Supervisory-AR)</td>
</tr>
<tr>
<td>HVAC OVRRIIDE</td>
<td>Switch Supervisory, nonlatching (tracking)</td>
</tr>
<tr>
<td>Power-Monitor</td>
<td>Power Fault</td>
</tr>
<tr>
<td>User-Defined-14</td>
<td>same as previous (Power Monitor)</td>
</tr>
<tr>
<td>Trouble-Monitor</td>
<td>Trouble</td>
</tr>
<tr>
<td>User-Defined-15</td>
<td>same as previous (Trouble Monitor)</td>
</tr>
<tr>
<td>Process-Monitor</td>
<td>General Purpose Signaling, latching</td>
</tr>
<tr>
<td>User-Defined-16</td>
<td>same as previous (Process-Monitor)</td>
</tr>
<tr>
<td>Process-Monitor-AR</td>
<td>General Purpose Signaling, nonlatching (tracking)</td>
</tr>
<tr>
<td>User-Defined-17</td>
<td>same as previous (Process-Monitor-AR)</td>
</tr>
<tr>
<td>MNS Event</td>
<td>Allows the Mass Notification System to override FACP programming and turn off designated active outputs</td>
</tr>
<tr>
<td>Future</td>
<td>not used</td>
</tr>
<tr>
<td>Ack-Switch</td>
<td>Acts like panel Acknowledge Key</td>
</tr>
<tr>
<td>Sil-Switch</td>
<td>Acts like panel Silence Key</td>
</tr>
<tr>
<td>Reset-Switch</td>
<td>Acts like panel Reset Key</td>
</tr>
<tr>
<td>Drill-Switch</td>
<td>Acts like panel Drill Key</td>
</tr>
<tr>
<td>PAS-Bypass</td>
<td>PAS Disable</td>
</tr>
<tr>
<td>HVAC RESTART</td>
<td>Switch (see note 2)</td>
</tr>
<tr>
<td>Drill-Switch-AR</td>
<td>Acts like panel Drill Key, nonlatching (tracking)</td>
</tr>
</tbody>
</table>

Table 3.1 Monitor Types

1 Combination systems employing these non-fire monitor types require the SLC loop to be programmed by the installer for Style 4 operation and isolator modules must be employed on each non-fire branch of the SLC as per Figure 13 in the SLC Wiring Manual (document number 51309). Fire and non-fire devices must not be used on the same SLC branch. For UL2017 compliance, The ANN-LED annunciator must be used to indicate the active, dedicated zone or device.

2 For entries ending in AR, AR refers to AutoResettable.

3 For HVAC RESTART and HVAC OVRRIIDE descriptions, refer to “Monitor Module Operation” on page 181.
Pre-signal

To enable the Pre-signal feature, press 1 while viewing Edit Monitor Screen #3 until the display reads Pre-signal Yes. Each press of the 1 key will cause the display to toggle between Pre-signal Yes and Pre-signal No. Refer to “Pre-signal” on page 142 for additional information.

Walktest

The Walktest feature allows one person to test the system devices without the necessity of manually resetting the control panel after each device activation. To enable devices, which are connected to a monitor module, for the Walktest feature, press 1 while viewing the Edit Monitor Screen #4 until the display reads Walktest Yes. Each press of the 1 key will cause the display to toggle between Walktest Yes and Walktest No. Refer to “Walktest” on page 145 for additional information.

Zone Assignment

A maximum of five zones can be programmed to each addressable monitor module. Pressing 2 while viewing Edit Monitor Screen #4 displays the following screen:

Note that Z** represents the Zone Number(s) corresponding to this device. The factory default for an unprogrammed device is Z00 for general alarm zone. A flashing cursor will appear on the first 0 to the left. Enter the two digit number corresponding to the zone that is to be assigned to this device. The cursor moves to the next Z** designation. Continue entering zone assignments or the remaining zones can be left blank or programmed as general alarm zones Z00. When all desired changes have been made, press the Enter key to store the zone assignments. The display will return to the Edit Monitor Screen #4.

Noun/Adjective

The Noun/Adjective selection allows the programmer to enter specific descriptors about the monitor module currently being programmed. Pressing 1 while viewing Edit Monitor Screen #5 will cause the following screen to be displayed:
Pressing 1 while viewing the Noun/Adjective Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Adjective screens. Press the number corresponding to the adjective that is to be used as a descriptor for the location of the monitor module currently being programmed.

Pressing 2 while viewing the Noun/Adjective Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Noun screens. Press the number corresponding to the noun that is to be used as a descriptor for the location of the monitor module currently being programmed.

Pressing 3 or 4 while viewing the Noun/Adjective Screen will display screens similar to the previous Adjective and Noun Screens. The new screens will list Custom Adjectives and Nouns which have been programmed into the control panel using the PS-Tools utility.
Description
The Description selection allows the programmer to enter additional information about the monitor module currently being programmed. This information will be displayed as part of the device label on the LCD display. Pressing 2 while viewing Edit Monitor Screen #5 will cause the following screen to be displayed:

A flashing cursor will appear at the first asterisk to the left. The programmer can enter additional descriptive information about the device being programmed. This information will appear on the LCD display along with the standard device label information.

A maximum of 20 characters (including spaces) can be entered. To enter alphanumeric characters from the keypad, repeatedly press the appropriate key until the desired character is displayed in the first position. For example, to enter the letter B, press the 2 (ABC) key three times to toggle through the characters 2, A and B. Press the right arrow key to move the cursor one position to the right and repeat the process to enter the next character. To enter a space, press the * (QZ) key four times until a blank appears in the desired position. When all characters have been entered, press the Enter key to store the information. The display will return to the Edit Monitor Screen #4, displaying the new information at the bottom of the screen.

Recall/Increment Function
In addition, the user may use the Recall/Increment function at any time when the cursor is on the first letter of the Adjective or Noun field as follows:

- If the zero key is pressed, a 0 is placed in the first letter position
- If the zero key is then pressed a second time with no intervening key actions, the entire Adjective field is replaced with the field entered for the previous device programmed, and the cursor moves to the last character of the field (Recall function). The Recalled Adjective or Noun field may now be changed letter-by-letter
- If the zero key is pressed again with no other intervening key actions and the last character in the field is a number 0-9, the number is incremented by one. If the last character is a letter, it changes to a 0. If the last character is 9 it goes to 0
- The above increment function may be repeated with each press of the zero key

As an example, the user could quickly enter ‘FLR_3_ROOM 305’ as follows:
1. The cursor is on the first letter of the Adjective field. Press the zero key twice to display FLR_3
2. With the cursor on the first letter of the Noun field, press the zero key twice to recall the display ROOM_304. The cursor automatically jumps from the first to the last letter of the Noun field
3. With the cursor on the last letter of the Noun field, press the zero key again to increment the room number to 305
4. Press the right arrow key to advance the zone field
5. Select a zone number from 00 to 99. Z00 (default zone) is the general alarm zone. Z01 through Z99 may be selected to link software zones
■ Edit Module Screen for Control Modules

The programmer can change a module’s existing or factory default programming by pressing 3 in the Modules Screen. The following screen will be displayed:

A flashing cursor will appear in the position of the first asterisk to the left.

The programmer keys in the three digit module address, such as 002. When the last digit is keyed-in, if the selected address corresponds to a control module, a screen displaying information about the control module with the selected address will be displayed as illustrated in the following:

In the preceding example:

- Normal - indicates that the module with the selected address is physically installed on the SLC and communicating with the control panel (enabled)
- <ADJ><NOUN> - represents the adjective and noun, which have been programmed, describing the location of the displayed device
- Control - indicates that the selected module is a control module
- S or * - represents Silenceable (S) or Nonsilenceable (*)
- W or * - represents Waterflow Timer Delay (W = Waterflow Timer Delay enabled, * = Waterflow Timer Delay disabled)
- ZNNN - represents the first of five possible software zones that the module is assigned to (NNN = the three digit zone number from 000 - 099)
- 1M002 - represents the Loop, Device type and Device address (1 = SLC Loop, M=Module and 002 = Module Address 02)

To change the programming for the displayed module, press the keyboard down arrow key to view the following Edit Control screens:

Enable/Disable Module

To Enable or Disable the control module, press the 1 key while viewing the Edit Control Screen #2. Each press of the key will toggle the screen between Enabled Yes and Enabled No. If Enabled No is selected, the module will not be polled by the control panel, preventing the module from activating its output devices. The control panel will indicate a system trouble condition and the Disable LED will turn on if any devices are disabled.
Type

To select the type of control module being programmed, press the 2 key while viewing the Edit Control Screen #2. This will cause the control panel to display the following Control Type Screens. Press the down arrow key to view additional screens and selections.

While viewing one of the Control Type screens, select the type of control module being programmed by pressing the corresponding keypad number key. The display will return to the Edit Control Screen #2 and indicate the new type selection.

NOTE: A control relay module set to the Resettable Power type will follow the main circuit board 24 VDC resettable power unless the control relay module is disabled.

The following table contains control module type codes and their functions which are displayed in the Control Type screens:

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Special Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell Circuit</td>
<td>NAC Type - supervised</td>
</tr>
<tr>
<td>Horn Circuit</td>
<td>NAC Type - supervised</td>
</tr>
<tr>
<td>Sounders</td>
<td>NAC Type - supervised</td>
</tr>
<tr>
<td>Relay</td>
<td>Ignore Open Circuit</td>
</tr>
<tr>
<td>Strobe Circuit</td>
<td>NAC Type - supervised</td>
</tr>
<tr>
<td>Control</td>
<td>NAC Type - supervised</td>
</tr>
<tr>
<td>Resettable Power</td>
<td>Relay Type - Ignore Open Circuit</td>
</tr>
<tr>
<td>HVAC SHUTDN</td>
<td>Relay Type - Ignore Open Circuit</td>
</tr>
</tbody>
</table>

1 When using a control relay module to supply resettable power to conventional 2-wire smoke detectors, the addressable monitor module must be programmed for Smoke-Conventional operation
2 For HVAC SHUTDN description, refer to “Control Module Operation” on page 181.

Silenceable

The Silenceable selection allows the programmer to select whether output devices connected to the control module can be silenced, either by pressing the Alarm Silence key or by enabling Autosilence. Pressing the 3 key while viewing Edit Control Screen #2 will enable the Silenceable feature causing the display to read Silenceable Yes. Repeated presses of the 3 key will cause the display to toggle between Silenceable Yes and Silenceable No.

Walktest

The Walktest feature allows one person to test the system devices without the necessity of manually resetting the control panel after each device activation. To enable devices, which are connected to a control module, for the Walktest feature, press 1 while viewing the Edit Control Screen #3 until the display reads Walktest Yes. Each press of the 1 key will cause the display to toggle between Walktest Yes and Walktest No. Refer to “Walktest” on page 145 for additional information.
Zone Assignment

A maximum of five zones can be programmed to each addressable control module. Pressing 2 while viewing Edit Control Screen #3 displays the following screen:

Note that Z** represents the Zone Number(s) corresponding to this device. The factory default for an unprogrammed device is Z00 for general alarm zone. A flashing cursor will appear on the first 0 to the left. Enter the two digit number corresponding to the zone that is to be assigned to this device. The cursor moves to the next Z** designation. Continue entering zone assignments or the remaining zones can be left blank or programmed as general alarm zones Z00. When all desired changes have been made, press the Enter key to store the zone assignments. The display will return to the Edit Control Screen #3.

Noun/Adjective

The Noun/Adjective selection allows the programmer to enter specific descriptors about the control module currently being programmed. Pressing 1 while viewing Edit Control Screen #4 will cause the following screen to be displayed:
Pressing 1 while viewing the Noun/Adjective Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Adjective screens. Press the number corresponding to the adjective that is to be used as a descriptor for the location of the control module currently being programmed.

Pressing 2 while viewing the Noun/Adjective Screen will cause the following screen(s) to be displayed. Note that the keyboard down arrow key must be pressed to see all the Noun screens. Press the number corresponding to the noun that is to be used as a descriptor for the location of the control module currently being programmed.

Pressing 3 or 4 while viewing the Noun/Adjective Screen will display screens similar to the previous Adjective and Noun Screens. The new screens will list Custom Adjectives and Nouns which have been programmed into the control panel using the PS-Tools programming utility.
Description

The Description selection allows the programmer to enter additional information about the control module currently being programmed. This information will be displayed as part of the device label on the display. Pressing 2 while viewing Edit Control Screen #4 will cause the following screen to be displayed:

A flashing cursor will appear at the first asterisk to the left. The programmer can enter additional descriptive information about the device being programmed. This information will appear on the display along with the standard device label information.

A maximum of 20 characters (including spaces) can be entered. To enter alphanumeric characters from the keypad, repeatedly press the appropriate key until the desired character is displayed in the first position. For example, to enter the letter B, press the 2 (ABC) key three times to toggle through the characters 1, A, and B. Press the right arrow key to move the cursor one position to the right and repeat the process to enter the next character. To enter a space, press the * (QZ) key four times until a blank appears in the desired position. When all characters have been entered, press the Enter key to store the information. The display will return to the Edit Control Screen #4, displaying the new information at the bottom of the screen.

Recall/Increment Function

In addition, the user may use the Recall/Increment function at any time when the cursor is on the first letter of the Adjective or Noun field as follows:

• If the zero key is pressed, a 0 is placed in the first letter position.
• If the zero key is then pressed a second time with no intervening key actions, the entire Adjective field is replaced with the field entered for the previous device programmed, and the cursor moves to the last character of the field (Recall function). The Recalled Adjective or Noun field may now be changed letter-by-letter.
• If the zero key is pressed again with no other intervening key actions and the last character in the field is a number 0-9, the number is incremented by one. If the last character is a letter, it changes to a 0. If the last character is 9 it goes to 0.
• The above increment function may be repeated with each press of the zero key.

As an example, the user could quickly enter ‘FLR_3_ROOM 305’ as follows:

1. The cursor is on the first letter of the Adjective field. Press the zero key twice to display FLR_3
2. With the cursor on the first letter of the Noun field, press the zero key twice to recall the display ROOM_304. The cursor automatically jumps from the first to the last letter of the Noun field.
3. With the cursor on the last letter of the Noun field, press the zero key again to increment the room number to 305.
4. Press the right arrow key to advance the zone field
5. Select a zone number from 00 to 99. Z00 (default zone) is the general alarm zone. Z01 through Z99 may be selected to link software zones.

MNS Override

The MNS Override feature, when enabled, allows the ECC-50/100 to override the FACP and turn off an active control module or prevent the control module from activating during a mass notification event. Pressing 1 while viewing Edit Control Screen #5 will cause the display to change from the factory default of MNS Override No to MNS Override Yes. Each press of the 1 key will cause the display to toggle between the two options.
3.6.3 Zone Setup

Pressing 3 while viewing Programming Screen #2 will access the Zone Setup screens as illustrated below:

Enable
Pressing 1 for Enable, while viewing Zone Setup Screen #1, will display the following screen:

This screen allows the programmer to enable zones, one at a time. A flashing cursor appears next to the Z, prompting the programmer to enter a two digit zone number (01 - 99). When the second digit is entered, the zone will be enabled and the cursor returns to the original position next to the Z. Another zone can then be enabled.

Disable
Pressing 2 for Disable, while viewing Zone Setup Screen #1, displays the following:

This screen allows the programmer to disable zones, one at a time. A flashing cursor appears next to the Z, prompting the programmer to enter a two digit zone number (01 - 99). When the second digit is entered, the zone will be disabled and the cursor will return to the original position next to the Z. Another zone can then be disabled.

Zone 97, 98 and 99
Pressing 3 for Zone 97, 98 and 99, while viewing Zone Setup Screen #1, will display the following screen:

Zones 97, 98 and 99 can be programmed for normal zone operation or for special purpose applications. In the above illustration, the three zones are shown Off, which means they can be programmed to function in the same manner as all other zones, by assigning them to input and output devices in the Programming Zone Assignment Screen.

Pressing 1 will cause the display to change to PAS 97 On. Each press of the 1 key will cause the display to toggle between PAS 97 On and PAS 97 Off. When Zone 97 is programmed On, a PAS (Positive Alarm Sequence) activation of any smoke detector will cause Zone 97 to activate. By assigning Zone 97 to a control module in the Programming Zone Assignment Screen, an output device connected to the control module can be used to indicate a PAS condition in the control
panel. Do not assign Zone 97 to a Notification Appliance Circuit when using this zone to indicate a PAS condition. Attempting to do so will generate an error message and will be prevented by software checks.

Pressing 2 will cause the display to change to Pre-signal 98 On. Each press of the 2 key will cause the display to toggle between Pre-signal 98 On and Pre-signal 98 Off. When Zone 98 is programmed On, a Pre-signal activation of any device will cause Zone 98 to activate. By assigning Zone 98 to a control module in the Programming Zone Assignment Screen, an output device connected to the control module can be used to indicate a Pre-signal condition in the control panel. Do not assign Zone 98 to a Notification Appliance Circuit when using this zone to indicate a Pre-signal condition. Attempting to do so will generate an error message and will be prevented by software checks.

Pressing 3 will cause the display to change to Two Stage 99 On. Each press of the 3 key will cause the display to toggle between Two Stage 99 On and Two Stage 99 Off. Refer to “Two Stage Operation” on page 99 for a description of this feature.

Zones Installed

Pressing 1 for Zones Installed, while viewing Zone Setup Screen #2, will display a screen similar to the following:

![Zones Installed Screen](image)

This display will show all of the zones that have been programmed into the control panel. Note that an up and/or down arrow may appear in the upper right corner of the display, indicating that additional screens of zone information exists. Press the up or down arrow keys to view the additional zones.

Zones Enabled

Pressing 2 for Zones Enabled, while viewing Zone Setup Screen #2, will display a screen similar to the following:

![Zones Enabled Screen](image)

This display will show all of the zones that are enabled in the control panel. Note that an up and/or down arrow may appear in the upper right corner of the display, indicating that additional screens of zone information exists. Press the up or down arrow keys to view the additional zones.

Zones Disabled

Pressing 3 for Zones Disabled, while viewing Zone Setup Screen #2, will display a screen similar to the following:

![Zones Disabled Screen](image)

This display will show all of the zones that are disabled in the control panel. Note that an up and/or down arrow may appear in the upper right corner of the display, indicating that additional screens of zone information exists. Press the up or down arrow keys to view the additional zones.
Zone Type

Zone Types must be programmed only if a DACT, programmed for zone reporting, is installed on the control panel. Pressing 1 for Zone Types, while viewing Zone Setup Screen #3, will display a screen similar to the following:

```
ZONE TYPE PROG
1=Z00 MONITOR
2=Z01 MONITOR
3=Z02 MONITOR
```

This display will show the system zones (default and user programmed) and their associated types. Note that an up and/or down arrow will appear in the upper right corner of the display, indicating that additional screens of zone information exists. Press the up or down arrow keys to view zones Z00 through Z99.

Zone types can be changed by pressing the keypad number key corresponding to the zone in each Zones Installed Screen. Available zone types will be displayed in the resultant screens. For example, to change the zone type for zone Z02 in the screen illustrated above, press 3. The following screens will be displayed:

```
ZONE TYPE PROG
1=MONITOR
2=SMOKE PHOTO
3=WATERFLOW
```

```
ZONE TYPE PROG
1=HEAT
2=PULL STATION
3=DUCT
```

```
ZONE TYPE PROG
1=MEDICAL
2=HAZARD
3=TAMPER
```

```
ZONE TYPE PROG
1=SUPERVISORY
2=PROC. MON
3=SMOKE ION
```

```
ZONE TYPE PROG
1=HEAT
2=PULL STATION
3=DUCT
```

To change the zone type for Z02 to Pull Station, scroll the display until Zone Type Program Screen #2 is displayed. Press 2 to program zone Z02 as a Pull Station zone. The display will return to the Zones Installed Screen showing zone Z02 and the Pull Station program type. Repeat the procedure for each zone to be changed.

IMPORTANT! In Zone Type Program Screen #1, selecting WATERFLOW will assign a Waterflow silenceable zone type to the selected zone. Any signaling devices programmed to the same zone can be silenced by pressing the Alarm Silence key or by using the auto-silence feature.

To program a waterflow circuit as nonsilenceable, refer to “System Setup” on page 92.

NOTE: Zone Types are only relevant for Central Station reporting. Changing a zone type will only change how it is reported to the Central Station.

Zones Available

Pressing 2 while viewing Zone Setup Screen #3 will display the following screen:

```
ZONES AVAILABLE
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
```

The display will show all of the zones that are still available for programming. Note that an up and/or down arrow may appear in the upper right corner of the display, indicating that additional screens of zone information exists. Press the up or down arrow key to view additional screens.
Zone Message

Pressing 3 while viewing Zone Setup Screen #3 will display the following screen:

<table>
<thead>
<tr>
<th>ZONE MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=Z00 NO MESSAGE</td>
</tr>
<tr>
<td>2=Z01 MESSAGE 1</td>
</tr>
<tr>
<td>3=Z02 NO MESSAGE</td>
</tr>
</tbody>
</table>

Pressing the down arrow key will display additional screens for Zones up to Z99. Press the number key corresponding to the Zone to be programmed. Screens will be displayed allowing the programmer to select Audio Messages 1 through 14. When an audio message is selected, the display will return to the Zone Message screen, showing the message selected for that particular zone. In the example above, Zone 01 has been programmed for Audio Message 1.

3.6.4 Loop Setup

Loop Setup allows the programmer to configure the SLC Loop for NFPA Style 4, 6, or 7 wiring and to select the loop protocol. Pressing 1 while viewing Programming Screen #2 will cause the following screen to be displayed:

<table>
<thead>
<tr>
<th>LOOP SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=STYLE 4</td>
</tr>
<tr>
<td>2=PROTOCOL LITESPEED</td>
</tr>
</tbody>
</table>

Style

To program the SLC Style for the selected loop, press 1 for Style, while viewing Loop Setup Screen. In the preceding example, the control panel is programmed for Style 4 SLC wiring as indicated by the 4 to the right of Style in the display. To change the wiring style, press 1 to toggle the display to read Style 6. Each press of the 1 key will cause the display to toggle between Style 4 and Style 6. Note that, when programming the Loop Style, the programmer can only select between Style 4 and Style 6. To program a system for Style 7 wiring, the programmer must select the Loop Setup for Style 6. Style 7 wiring is the same as Style 6 with the added requirement that each addressable device on the loop must have a pair of isolator modules, one on each side.

NOTE on SLC Troubles:

If the FACP reports an open fault on an SLC Loop programmed for Style 6, the trouble condition will latch at the FACP. When the SLC Loop has been repaired, the Reset button must be pressed at the FACP (at least 2 minutes after the trouble has been repaired) to clear the SLC trouble.

Loop Protocol

Loop Protocol refers to the SLC loop mode of operation. Refer to “Wire Requirements” on page 178 for wire specifications based upon SLC protocol. There are two Loop Protocols available:

- CLIP (Classic Loop Interface Protocol) - which is used for the older legacy addressable devices such as the M300 Series modules and detectors.
- LiteSpeed (factory default setting) - used for the 350 Series or newer addressable devices for quicker response times. Note that the legacy devices can operate only in CLIP mode while the newer devices are compatible with CLIP and LiteSpeed modes of operation.

Pressing 2 while viewing the Loop Setup Screen will toggle between CLIP and LiteSpeed Protocols.
Device Addressing

It is important to note that the MS-9200UDLS addressable device capacity is 99 detectors and 99 control/monitor modules. Newer devices can be set to addresses higher than 99 but these addresses will not function with the MS-9200UDLS.

Note that it is permissible to mix old and new devices on the same loop but the FACP must be set for CLIP mode when older devices are installed.

3.6.5 System Setup

System Setup allows the programmer to configure the following control panel features:

- **Trouble Reminder** - This feature, when enabled, provides an audible reminder that an alarm or trouble still exists on the FACP after the control panel has been silenced. The control panel piezo sounder will pulse once every 15 seconds during an alarm and every two minutes during a trouble condition, after the Alarm Silence or Acknowledge key is pressed. The piezo will continue to sound at these rates until the alarm or trouble condition is cleared. If the trouble condition is not cleared within 24 hours, the panel will reactivate the trouble sounder and retransmit the trouble condition to the central station if connected.

- **Banner** - This option allows the user to change the top two lines of the LCD display from the blank factory default readout to a user defined readout when the control panel is in Normal condition.

- **Time-Date** - This feature allows the programmer to set the time, display format (24 hr or 12 hr), date and daylight savings time feature into the FACP memory.

- **Timers** - This option allows the programmer to set the PAS (Positive Alarm Sequence) time delay, Pre-Signal time delay and Waterflow time delay.

- **NACs** - This feature allows the programmer to configure the control panel Notification Appliance Circuits for a variety of options, such as circuit type, silenceable/nonsilenceable, autosilence, coding, silence inhibit, zone assignment and enable/disable.

- **Relays** - This option allows programming of two onboard relays for activation by various control panel events, such as alarm, trouble, supervisory, etc.

- **Canadian Option** - This option allows the programming of certain options to Canadian specifications.

- **Waterflow Silenceable** - This option provides the ability to silence any output circuit activated by a monitor module programmed as a waterflow type.

- **MNS Override** - This option allows the Mass Notification System to override the FACP’s specified NACs and control modules.

- **Lite-Connect** - This option allows the programmer to enable the ANN-LC Lite-Connect module and configure the Lite-Connect network.

Pressing 2 for System Setup, while viewing Programming Screen #2, will cause the following screens to be displayed:
Trouble Reminder

The Trouble Reminder feature causes the control panel piezo to sound a reminder ‘beep’ for alarms and troubles, after the panel has been silenced. Refer to “System Setup” on page 92, for a detailed description of this feature. Pressing 1 while viewing System Setup Screen #1 will cause the display to toggle to Trouble Rem On, which enables this feature. Each press of the 1 key will cause the display to toggle between Trouble Rem On and Trouble Rem Off.

Banner

The top line of the display, which appears when the control panel is in normal mode, can be changed by using the Banner option. Pressing 2 while viewing System Setup Screen #1 will cause the following to be displayed:

```
Pressing 1 while viewing the Banner Screen will select the blank factory default banner setting and display the following screen:

Banner Screen

1=FACTORY
2=USER DEFINED

Banner Screen

Pressing the Enter key will store this selection in nonvolatile memory and return the display to the Banner Screen.

Pressing 2 while viewing the Banner Screen will cause the following screens to be displayed:

User Defined Banner Screen #1

USER DEFINED BANNER
PRESS ENTER IF OK

User Defined Banner Screen #2

USER BANNER - LINE 2
PRESS ENTER IF OK

These screens allow the programmer to enter a two line custom banner. A flashing cursor will appear in the bottom left corner of each display. A maximum of 20 characters (including spaces) can be entered into each screen for a total of two lines with 40 characters. After entering up to 20 characters in the first screen, press Enter to view the second screen. Enter up to 20 characters in the second screen in the same manner or just press Enter if a second banner line is not being entered. To quickly clear the current banner, press the CLR key.

To enter alphanumeric characters from the keypad, repeatedly press the appropriate key until the desired character is displayed in the first position. For example, to enter the letter B, press the 2 (ABC) key three times to toggle through the characters 1, A, and B. Press the right arrow key to move the cursor one position to the right and repeat the process to enter the next character. To enter a space, press the * (QZ) key four times to place a blank in the desired position. When all characters have been entered, press the Enter key to store the information. The display will return to the Banner Screen.
Time-Date

The control panel time and date can be changed by pressing 3 while viewing the System Setup Screen #1. The following screen will be displayed:

- **Time**

To change the time, press 1 while viewing the Time-Date Screen. The following screen will be displayed:

A flashing cursor is located toward the top left of the display. Below the cursor is the current time. To change the time, enter the two-digit hours followed by the two-digit minutes. The cursor will move one position to the right each time a digit is entered. After the last minutes digit is entered, the cursor will again move one position to the right. At this point enter 1 for AM or 2 for PM. The display will then return to the Time-Date Screen which will show the new time entry. If an error is made while entering a digit, press the CLR key to delete the entire entry and beginning again.

- **Date**

To change the date, press 2 while viewing the Time-Date Screen. The following screen will be displayed:

A flashing cursor is located toward the top left of the display. Below the cursor is the current date. To change the date, enter the two-digit month followed by the two-digit day and then the two-digit year (01 for 2001, 02 for 2002, etc.). The cursor will move one position to the right each time a digit is entered. After the last year digit is entered, the display will return to the Time-Date Screen which will show the new date entry. If an error is made while entering a digit, press the CLR key to delete the entire entry and beginning again.

- **Clock Format**

The clock can be configured to display 12 hour (AM & PM) or 24 hour (military) time. Pressing 3 while viewing the Time-Date screen will cause the display to toggle between 12HR and 24HR. Select 12HR for 12 hour display or 24HR for 24 hour display. 

NOTE: If the clock is changed to 24 hour (military) format, the date will change to the European standard of Day-Month-Year (for display purposes only).
### Daylight Savings Time

Pressing 1 while viewing Time-Date Screen #2 will cause the following screens to be displayed:

- **Daylight Savings Screen #1**
  - Daylight Savings
  - 1=Enabled Yes
  - 2=Start Month Mar
  - 3=Start Week Week-2

- **Daylight Savings Screen #2**
  - Daylight Savings
  - 1=End Month Nov
  - 2=End Week Week-1

Pressing 1 while viewing Daylight Savings Screen #1 will cause the display to toggle between Enabled Yes and Enabled No. The control panel will automatically update the time for daylight savings time when Enabled Yes is selected.

Pressing 2 while viewing Daylight Savings Screen #1 will display another screen which allows the programmer to select the month that daylight savings time will begin. In this sub-screen, pressing 1 will select March, 2 will select April, and 3 will select May.

Pressing 3 while viewing Daylight Savings Screen #1 will display two sub-screens which allow the programmer to select the week of the month that daylight savings time will begin. In the first sub-screen, pressing 1 will select the first week, 2 will select the second week and 3 will select the third week, while in the second sub-screen, pressing 1 will select the fourth week and 2 will select the last week of the selected month.

Pressing 1 while viewing Daylight Savings Screen #2 will display another screen which allows the programmer to select the month that daylight savings time will end. In this sub-screen, pressing 1 will select September, 2 will select October, and 3 will select November.

Pressing 2 while viewing Daylight Savings Screen #2 will display two sub-screens which allow the programmer to select the week of the month that daylight savings time will end. In the first sub-screen, pressing 1 will select the first week, 2 will select the second week and 3 will select the third week, while in the second sub-screen, pressing 4 will select the fourth week and 5 will select the last week of the selected month.

### Timers

Timer delays for PAS, Pre-signal and waterflow activation can be programmed by pressing 1 while viewing System Setup Screen #2. The following screen will be displayed:

- **Timer Screen #1**
  - Timers
  - 1=PAS Delay 000
  - 2=Pre Signal 000
  - 3=Waterflow 000

- **Timer Screen #2**
  - Timers
  - 1=AC Loss Delay 000

### PAS (Positive Alarm Sequence) Delay

The factory default setting for PAS is 000 for no delay. To select a PAS delay of 001 to 180 seconds for all devices programmed for PAS, press 1 while viewing Timer Screen #1. The following display will appear:

- **PAS Delay Screen**
  - PAS Delay
  - Range 0-180 Seconds

A flashing cursor is positioned in the lower left corner of the display. Enter a delay time consisting of three digits, such as 005 for five seconds. Upon entering the third digit, the time delay will be stored in the control panel memory and the display will return to the Delay Screen which will indicate the new delay time.
**Pre-signal Delay**

The factory default setting for Pre-signal delay is 000 for no delay. To select a Pre-signal delay of 001 to 180 seconds for all devices programmed for Pre-signal, press 2 while viewing Timer Screen #1. The following screen will be displayed:

![Pre-signal Delay Screen](image)

A flashing cursor is positioned in the lower left corner of the display. Enter a delay time consisting of three digits, such as 009 for nine seconds. Upon entering the third digit, the time delay will be stored in the control panel memory and the display will return to the Delay Screen which will indicate the new delay time.

*Note that the FACP allows programming for PAS and Pre-signal timers, but a detector can only be programmed for either PAS or Pre-signal operation. Refer to “Edit Detector” on page 69 for programming details.*

**Waterflow Delay**

A delay can be added prior to declaring a waterflow type of alarm. Be careful to include any built-in delays of the waterflow device. The factory default setting for Waterflow delay is 000 for no delay. To select a Waterflow delay of 01 to 90 seconds for all devices programmed for Waterflow delay, press 3 while viewing Timer Screen #1. The following screen will be displayed:

![Waterflow Delay Screen](image)

A flashing cursor is positioned in the lower left corner of the display. Enter a delay time consisting of two digits, such as 25 for twenty-five seconds. Upon entering the second digit, the time delay will be stored in the control panel memory and the display will return to the Delay Screen which will indicate the new delay time.

**AC Loss Delay**

The reporting of a loss of AC power to a central station can be delayed by programming the length of the desired delay. The factory default setting is 2 hours. Press 1 while viewing Timer Screen #2 to display the following:

![AC Loss Delay Screen #1](image)

Pressing 1 while viewing AC Loss Delay Screen #1 will program the FACP to transmit an AC Loss report immediately to the central station.

Pressing 2 while viewing AC Loss Delay Screen #1 will display the following:

![AC Loss Delay Screen #2](image)
A flashing cursor will appear in the lower left corner of the display. Type the two digit AC loss reporting delay in hours (00 to 23 hour delay). When the second digit is entered, the display will return to AC Loss Delay Screen #1.

**NOTE:** Upon the loss of AC power at the control panel, relays programmed for ‘AC Loss’ will transfer immediately, regardless of the AC Loss Delay setting. If no trouble exists at the panel other than AC Loss, the System Trouble relay will delay its activation for the duration of the AC Loss Delay setting.

### NAC (Notification Appliance Circuit)

The options for the NACs on the control panel main circuit board can be configure by pressing 2 while viewing System Setup Screen #2. The following screens will be displayed:

The Notification Appliance Circuits can be configured independently by pressing 1 for NAC 1, 2 for NAC 2, 3 for NAC 3, or 4 for NAC 4.

The following screens will be displayed for each selection:

- **Enabled**
  
  Pressing 1 while viewing NAC Screen #1 will cause the display to change to Enabled No. This will prevent the selected main circuit board NAC from activating its devices. Each press of the 1 key will cause the display to toggle between Enabled Yes and Enabled No.

**NOTE:** The programming for NAC 1 will determine the operation of the remote power supply sync.

- **Type**
  
  The main circuit board NAC type can be programmed by pressing 2 while viewing NAC Screen #1. The following screen will be displayed. Press the down arrow key to view additional screens:

  Select the NAC device type by pressing the number corresponding to the type in the appropriate screen. When the selection is made, the display will return to NAC Screen #1.
The following table contains NAC type codes and their functions:

<table>
<thead>
<tr>
<th>NAC Type Code</th>
<th>Special Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell</td>
<td>None</td>
</tr>
<tr>
<td>Horn</td>
<td>None</td>
</tr>
<tr>
<td>Strobe</td>
<td>None</td>
</tr>
<tr>
<td>Synced Strobe</td>
<td>Synchronized to manufacturer</td>
</tr>
<tr>
<td>Strobe Sil Sync</td>
<td>Same as Synced Strobe but Silence turns off audible &amp; visual devices</td>
</tr>
<tr>
<td>Future Use</td>
<td>None</td>
</tr>
<tr>
<td>Future Use</td>
<td>None</td>
</tr>
<tr>
<td>Future Use</td>
<td>None</td>
</tr>
<tr>
<td>Blank</td>
<td>None</td>
</tr>
</tbody>
</table>

### Silenceable

Pressing 3 while viewing NAC Screen #1 will cause the display to change to *Silenceable No*. This will prevent the selected main circuit board NAC from being silenced by pressing the Alarm Silence key or by the Auto Silence feature. Each press of the 3 key will cause the display to toggle between *Silenceable Yes* and *Silenceable No*.

**Important**: When a Notification Appliance Circuit with a mix of audible and visual devices is programmed for silenceable and the *Synced Strobe* feature is selected, only the audible devices will be turned off if the Silence key is pressed or if the Autosilence feature is enabled. The visual devices (strokes, etc.) will continue to operate. If the *Strobe Sil Sync* feature is selected, Silence or Autosilence will turn off both audible and visual devices.

### Auto Silence

The Auto Silence feature, when enabled, automatically silences all main circuit board silenceable notification appliances after a programmed length of time. To enable this feature and program the time delay before Auto Silence activation, press 1 while viewing NAC Screen #2. The following screens will be displayed:

To disable the Auto Silence feature, press 1 for *No* while viewing Auto Silence Screen #1. To enable the Auto Silence feature, press the number corresponding to the time delay which will elapse before Auto Silence activates. This information will be stored in memory and the display will return to NAC Screen #2.

**NOTE**: All silenceable control modules as well as the remote power supply sync will be controlled by the Autosilence timer for NAC 1.
- **Coding (only for NACs not programmed as Sync Strobe Type)**

The Coding feature allows the programmer to select the type of output that the main circuit board notification appliances will generate when activated. Pressing 2 while viewing NAC Screen #2 will cause the following displays to appear:

![Coding Screen #1](image1)

![Coding Screen #2](image2)

The programmer can select the notification appliance output by pressing the number corresponding to the desired output. The coding selections are:

- Steady - a continuous output with no coding
- March Time - 120 ppm (pulse-per-minute) output
- California - 10 seconds on and 5 seconds off
- Temporal - ½ second on, ½ second off, ½ second on, ½ second off, ½ second on, 1½ second off
- Two Stage - refer to “Two Stage Operation” on page 99 for a description

Selection of one of the above options will cause the control panel to store the information in memory and return the display to NAC Screen #2, which will display the new coding choice.

**Two Stage Operation**

Two Stage operation consists of the following:

- 1st stage output - 20 ppm (pulse-per-minute) coding
- 2nd stage output - Temporal coding as described above
- Acknowledge button functions as the automatic alarm signal cancel button

If Two Stage operation is programmed as the Coding option, the following sequence of events will occur during an alarm.

1. The on-board NACs which are programmed to General Alarm Zone 0 will activate with a 1st stage output upon activation of any alarm point.
2. If the activated alarm point is directly mapped to a zone which is programmed to an on-board NAC, that NAC will go directly to 2nd stage coding output. All other NACs not directly mapped to the activated alarm point’s zone but assigned to Zone 0 will activate with a 1st stage output.
3. If, after the programmed time of 3 or 5 minutes, the Acknowledge switch has not been pressed, all NACs presently in 1st stage activation will go to 2nd stage activation.
4. If an Acknowledge switch has been pressed, the Alarm LED will turn from flashing to steady. Any NACs currently in 1st stage activation will remain in 1st stage. Pressing the Acknowledge switch does not affect NACs already in 2nd stage activation.
5. If another alarm point is activated and the countdown timer is counting, the alarm point will have no effect on the NACs unless the alarm point’s zones are directly mapped to one of the NACs, in which case it will follow the procedure outlined in step 2.
6. If another alarm point is activated and the countdown timer has stopped counting due to the Acknowledge switch being pressed, the countdown timer will restart and the NACs will respond as outlined in step 2. NACs already in 2nd stage activation will not be affected.
7. Any control modules assigned to special Zone 99 will be activated either by direct mapping of an input device programmed to Zone 99 or if the timer counts down to zero or when any NAC goes into 2nd stage coding.
8. Control modules that are programmed to the same zone as the activated input device will not be delayed for activation.
Zone

A maximum of five zones can be programmed to each main circuit board NAC. Pressing 1 while viewing NAC Screen #3 displays the following screen:

Note that Z** represents the Zone Number(s) corresponding to the selected NAC. The factory default for an unprogrammed device is Z00 for general alarm zone. A flashing cursor will appear on the first 0 to the left. Enter the two digit number corresponding to the zone that is to be assigned to this NAC. The cursor moves to the next Z** designation. Continue entering zone assignments or the remaining zones can be left blank or programmed as general alarm zone Z00. When all desired changes have been made, press the Enter key to store the zone assignments. The display will return to the NAC Screen #3 which will show the zone assignments just entered.

■ Silence Inhibited

The Silence Inhibit feature, when enabled, prevents the silencing of the selected main circuit board NAC for a period of one minute. Resetting the FACP will also be prevented for one minute while the NAC programmed for silence inhibit is activated. Pressing 2 while viewing NAC Screen #3 will cause the display to change from the factory default of Silence Inhibit No to Silence Inhibit Yes. Each press of the 2 key will cause the display to toggle between the two options.

■ Sync Type

If synchronized strobes were selected as the Type of device installed, the type of synchronization must be selected in this option. Pressing 1 while viewing NAC Screen #4 will cause the following screen to be displayed:

Pressing 1 while viewing this screen will select System Sensor synchronization, 2 will select Wheelock, and 3 will select Gentex.

Maximum Number of Strobes for Synchronization

The total current draw for each Notification Appliance Circuit cannot exceed 2.5 amps. Refer to the manufacturer’s documentation supplied with the Strobes to determine the maximum current draw for each strobe and ensure that the circuit maximum is not exceeded.

To ensure proper strobe and circuit operation, there is also a limit to the number of strobes that can be attached to each circuit. Following is a list of the strobes that have been tested with this FACP and the maximum number that can be connected to each NAC. Make sure that the NAC maximum current is not exceeded:

- System Sensor: 40 Strobes
- Wheelock: 25 Strobes
- Gentex: 23 Strobes

■ MNS Override

The MNS Override feature, when enabled, allows the ECC-50/100 to override the FACP and turn off an active NAC or prevent the NAC from activating during a mass notification event. Pressing 2 while viewing NAC Screen #4 will cause the display to change from the factory default of MNS Override No to MNS Override Yes. Each press of the 2 key will cause the display to toggle between the two options.
Relays

Pressing 3 while viewing System Setup Screen #2 will allow the programmer to configure two main circuit board Form-C relays from the following screen:

![Relays Selection Screen](image)

To program Relay 1 or Relay 3, press the number corresponding to the selected relay. Note that Relay 2 is fixed as a Trouble relay. Selecting Relay 2 will have no effect on its programming. The following screen will appear for each relay to be programmed:

![Relay Type Screen](image)

Pressing 1 for Type while viewing the Relay Screen will cause the following screens to be displayed:

![Relay Screen #1](image)

![Relay Screen #2](image)

![Relay Screen #3](image)

![Relay Screen #4](image)

While viewing the selected screen, press the number corresponding to the desired relay type to program the main circuit board relay. The choice will be stored in memory and the display will return to the Relay Type Screen which will show the programmed type choice. Press the Escape key to return to the Relays Selection Screen and repeat the preceding procedure for the remaining relays.

NOTES:

1. AR (AutoResettable) in SUPERVISORY AR and PROCMON AR means that a relay with the Supervisory and/or Process Monitor type code, when activated, will automatically reset when the corresponding condition is cleared.
2. A relay programmed with the Silenceable Alarm type will activate upon any alarm and deactivate when the FACP Alarm Silenced LED is illuminated.

Canadian Option

Pressing 1 while viewing System Setup Screen #3 will configure the FACP to comply with Canadian requirements. The display will change to Canadian Opt. On. Each press of the 1 key will cause the display to toggle between Canadian Opt. On and Canadian Opt. Off:

![System Setup Screen #3](image)

Important! For Canadian Applications, this option must be set to ON prior to any other panel programming.
The Canadian Options configures the FACP with the following as required by Canada:

- The following monitor module type codes are **not** available:
  - monitor
  - non-latching supervisory
  - non-latching drill
  - non-latching process monitor
  - process monitor
  - hazard
  - tornado
  - medical alert

- The auto-silence timer is fixed at 20 minutes and cannot be changed.
- Addressable ionization smoke detector sensitivity is automatically monitored using Canadian specifications.
- The Positive Alarm Sequence and Pre-Signal option are not available for Canadian applications.

**Waterflow Silenceable**

Pressing 2 while viewing System Setup Screen #3 will allow the programmer to configure the system for silenceable on nonsilenceable waterflow circuits. Each press of the 2 key will toggle the display between *Waterflow Sil. No* and *Waterflow Sil. Yes*. When *Waterflow Sil. No* is selected, all output devices associated with a waterflow type input device, will be nonsilenceable. When *Waterflow Sil. Yes* is selected, all output devices associated with a waterflow type input device, will be silenceable.

**MNS Override**

Pressing 3 while viewing System Setup Screen #3 will allow the programmer to configure the system for use with the Mass Notification System (ECC-50/100 panel). Each press of the 3 key will toggle the display between *MNS Override No* and *MNS Override Yes*. When *MNS Override No* is selected, the ECC-50/100 panel does not have permission to override the FACP. When *MNS Override Yes* is selected, the ECC-50/100 panel will override the FACP, taking control of its NACs and control modules during a mass notification event. Refer to the *ECC-50/100 Manual* for more information. When the Canadian Option is set to **On**, the MNS Override feature will become unavailable.

**Lite-Connect**

Pressing 1 while viewing System Setup Screen #4 will allow the programmer to configure the system for the Lite-Connect circuit.

Pressing 1 while viewing the Node Mode Setup Screen will allow the programmer to enable the Lite-Connect circuit. Select *Enabled Yes* if an ANN-LC has been installed and wired to the secondary ANN-BUS. Each press of the 1 key will toggle the display between *Enabled No* and *Enabled Yes*. 

Pressing 2 while viewing the Node Mode Setup Screen will allow the programmer to enter the address of the node on the Lite-Connect circuit.

![Node Mode Setup Screen]

A flashing cursor will appear in the lower left corner of the display. Enter the two-digit address which can be a value between 02 and 17. (Address 01 is reserved for the hub.) After the second digit is entered, the display will return to the Node Mode Setup screen.

### 3.6.6 Verify Loop

Pressing 3 while viewing Programming Screen #2, will select the Verify Loop option. During loop verification, the FACP polls each device on the SLC to determine if the device is communicating and whether or not it responds with the proper type identification. The following screen will be displayed while verification is in progress:

![Verification Progress Screen]

When Loop verification has been completed, the display will indicate that the system is OK or, if problems have been detected, any device type programming errors. Use the up and down arrow keys to view all detected errors.

### 3.6.7 History

The History option allows an authorized user to view or erase events which have occurred in the control panel. Pressing 1 while viewing Programming Screen #3 will display the History options as shown in the following display:

![History Screen]

**View Events**

Pressing 1 while viewing the History Screen will allow the user to select the events to be viewed as illustrated in the following:

![View Events Screen]

While displaying the View Events screen, press 1 to view all events, 2 to view only alarms or 3 to view other events. Use the up and down arrow keys to scroll through all of the displayed events.
Erase History

The Erase History option allows a user to erase all events from the history file. This will provide a clean slate in order to use the history file to track future events. Pressing 2 while viewing the History Screen will display the following screen:

```
ERASE HISTORY
PROCEED ?
1=YES 2=NO
```

Erase History Screen

Pressing 1 while viewing the Erase History Screen will erase all events from the History file. During this process, the display will read as follows:

```
ERASING HISTORY
PLEASE WAIT
```

Erase History Wait Screen

After the History file has been erased, the display will return to the History Screen.

3.6.8 Walktest

Walktest allows an individual to test the fire alarm system without the necessity to reset the control panel after each device activation. Pressing 2 while viewing the Programming Screen #3 will cause the following Walktest options to be displayed:

```
WALKTEST
1=SILENT 2=AUDIBLE 3=VIEW RESULT
```

Walktest Screen

To perform a silent walktest which will not sound the NACs, press 1 while viewing the Walktest Screen. To perform an audible walktest, which will sound the NACs, press 2 while viewing the Walktest Screen. When either option is chosen, the panel will enter Walktest Mode and the following screen will be displayed:

```
UNIT IN WALKTEST
1=VIEW WALKTEST LOG 2=VIEW POINTS 3=VIEW SUMMARY
```

Unit In Walktest Screen

From this screen, it is possible to view the walktest log, untested system points or a summary of the addressable devices tested during the current walktest. The user can select between any of these screens without interrupting the current walktest session. The walktest session will not end until the Unit In Walktest screen is exited by pressing the Escape key.

Pressing 1 for View Walktest Log while viewing the Unit In Walktest screen will cause a screen similar to one of the following two screens to be displayed:

```
NO EVENTS IN WALKTEST LOG
```

OR

```
ALARM: MONITOR
NORTH CLASSROOM
2001
10*15A 012308 1M006
```

If there are no events in the current walktest session, the first screen will be displayed, indicating no events have been stored in the walktest log. If any events have been stored, a screen similar to the second will be displayed indicating the latest event. As walktest events occur, the display will change to indicate the latest event. All stored events can be scrolled on the screen by pressing the up or down arrow keys. To return to the first event, press the 1st Event key.
Pressing 2 for View Points while viewing the Unit In Walktest screen will display one of the following screens:

![NO POINTS IN SYSTEM](image)

OR

![UNTESTED POINTS](image)

If the system has no points installed, the first screen will be displayed. If points are installed, the second screen will be displayed, which allows the viewing of all untested system points and their status relating to the current walktest session. The up and down arrow keys will allow viewing of all untested points. If a point is tested while it is being displayed, the screen will update and display the next untested point. The first line indicates the total number of untested points. The second line displays information about an untested point. A description on the bottom of the screen will indicate if the displayed point has been disabled, if the Walktest option has been disabled for that point or if the point is not yet tested. The up and down arrow keys allow the user to scroll through all untested points.

Pressing 3 for View Summary while viewing the Unit In Walktest screen will display a new screen which will show a total of the tested detectors, tested modules, untested detectors and untested modules for the current walktest session.

The user can perform a one-person walktest by activating devices throughout the system. As each device is activated, the information about the activated device is stored in the Walktest Log. The information can be viewed by choosing one of the options from the Unit In Walktest screen.

To end the Walktest session, press the Escape key to return to the Walktest screen. Pressing 3 for View Results while viewing the Walktest screen, after a walktest session has been completed, will allow the operator to view the final results of the most recent walktest. The following screen will be displayed:

![WALKTEST RESULTS](image)

Use the up and down arrow keys to view all of the walktest results which will be displayed. Note that the Walktest log is stored in RAM. If all power (AC and DC) is removed from the FACP, the Walktest log information will be lost. This information is also overwritten when subsequent walktests are performed.

### 3.6.9 Option Modules

Options available for the MS-9200UDLS include ANN-BUS annunciators, legacy ACS BUS annunciators, and the LCD-80F Terminal Mode annunciator, printer connection for acquiring hardcopy printouts of panel data, and PC (Personal Computer) connection for uploading and downloading panel data.

Pressing 3 while viewing Programming Screen #3 will display the following screen:

![OPTION MODULES](image)

Note that PR4800 in the display indicates that a supervised printer, configured for 4800 baud, has been previously programmed into the system.
Annunciators

Pressing 1 while viewing the Options Screen will cause the control panel to display the following screens:

An LCD-80F Terminal Mode annunciator, ACS BUS annunciator, or ANN-BUS annunciator/module can be installed in the MS-9200UDLS system. Refer to “Guidelines” on page 23 for rules governing the use of various annunciator types. Do not use a mix of ACS annunciators and ANN annunciators since they use different communication protocols. ACS or ANN annunciators use the same TB9 terminal block connection. To install any of these devices, press the number corresponding to the desired device shown in the Annunciator Screen.

Term Options

While viewing the Annunciators screen, each press of the 1 key for Term Enabled, will cause the display to toggle between Term Enabled No and Term Enabled Yes.

Notes:

1. The LCD-80F is a Terminal Mode annunciator. To enable the MS-9200UDLS for LCD-80F operation, press 1 for Term Enabled Yes.
2. The Terminal Mode annunciator (LCD-80F) and the Printer/PC use the same TB8 terminal block on the MS-9200UDLS main circuit board. Only one device can be connected at one time, therefore, enabling an annunciator in the Term Option will disable any Printer/PC communications.

ACS Options

Pressing 2 for ACS Options while viewing the Annunciators screen, will display the following screen:

Pressing 1 while viewing the ACS Options screen will cause the display to toggle between ACS Enabled Yes and ACS Enabled No. To install an ACS annunciator, the display must read ACS Enabled Yes.

If ACS has been enabled, press 2 while viewing the Annunciator Screen to select addresses for the ACS annunciators. The following screen will be displayed:

Pressing the down arrow key will allow the programmer to view additional screens displaying Addresses 1 - 31. Each screen will indicate if an address has been used for an installed ACS annunciator. To select one or more addresses for the installed ACS annunciator(s), press the number key corresponding to the address in each screen. The display for the selected address will change from No to Yes. Each press of the number key will cause the display to toggle between No and Yes. The address of each installed annunciator must be enabled to allow communication between the FACP and annunciator.
Annunciator addressing is specific to the MS-9200UDLS control panel. The following table describes the annunciator addresses and the corresponding addressable devices that will be annunciated at each annunciator address.

<table>
<thead>
<tr>
<th>ACS Annunciator Address</th>
<th>Annunciator Displays the Following Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 General System Status Points &amp; Zones 1 - 56</td>
</tr>
<tr>
<td>2</td>
<td>Zones 57 - 99 &amp; 4 NACs</td>
</tr>
<tr>
<td>3</td>
<td>SLC Loop, Module Addresses 1 - 64</td>
</tr>
<tr>
<td>4</td>
<td>not used</td>
</tr>
<tr>
<td>5</td>
<td>SLC Loop, Module Addresses 65 - 99</td>
</tr>
<tr>
<td>6</td>
<td>not used</td>
</tr>
<tr>
<td>7</td>
<td>not used</td>
</tr>
<tr>
<td>8</td>
<td>SLC Loop, Detector Addresses 1 - 64</td>
</tr>
<tr>
<td>9</td>
<td>not used</td>
</tr>
<tr>
<td>10</td>
<td>SLC Loop, Detector Addresses 65 - 99</td>
</tr>
<tr>
<td>11</td>
<td>not used</td>
</tr>
<tr>
<td>12</td>
<td>not used</td>
</tr>
<tr>
<td>13</td>
<td>not used</td>
</tr>
<tr>
<td>14</td>
<td>not used</td>
</tr>
<tr>
<td>15</td>
<td>not used</td>
</tr>
<tr>
<td>16</td>
<td>not used</td>
</tr>
<tr>
<td>17</td>
<td>not used</td>
</tr>
<tr>
<td>18</td>
<td>not used</td>
</tr>
<tr>
<td>19</td>
<td>not used</td>
</tr>
<tr>
<td>20</td>
<td>8 General System Status Points &amp; Zones 1 - 56</td>
</tr>
<tr>
<td>21</td>
<td>Zones 57 - 99 &amp; 4 NACs</td>
</tr>
<tr>
<td>22</td>
<td>SLC Loop, Module Addresses 1 - 64</td>
</tr>
<tr>
<td>23</td>
<td>not used</td>
</tr>
<tr>
<td>24</td>
<td>SLC Loop, Module Addresses 65 - 99</td>
</tr>
<tr>
<td>25</td>
<td>not used</td>
</tr>
<tr>
<td>26</td>
<td>not used</td>
</tr>
<tr>
<td>27</td>
<td>SLC Loop, Detector Addresses 1 - 64</td>
</tr>
<tr>
<td>28</td>
<td>not used</td>
</tr>
<tr>
<td>29</td>
<td>SLC Loop, Detector Addresses 65 - 99</td>
</tr>
<tr>
<td>30</td>
<td>not used</td>
</tr>
<tr>
<td>31</td>
<td>not used</td>
</tr>
<tr>
<td>32</td>
<td>not used</td>
</tr>
</tbody>
</table>

NOTE: The MS-9200UDLS must be programmed for the annunciators installed on the system. Refer to “Annunciators” on page 106 for information on annunciator programming. Make certain to program the annunciator addresses that have been physically installed on the system.

**NOTE:** The 8 General System Status Points include the following:
- General Alarm
- General Trouble
- General Supervisory
- Alarm Silenced
- System Off Normal
- AC Loss
- Battery Fault
- NAC Fault
## ANN-BUS Options

Pressing 3 for *ANN-BUS Options*, while viewing the Annunciators screen, will cause the following screens to be displayed:

![ANN-BUS Select Screen](image)

A printer module, graphic annunciator module, LCD annunciator module, LED annunciator module and relay module can be programmed into the MS-9200UDLS system. These devices communicate with the FACP over the ANN-BUS terminals on the control panel.

Two ANN-BUS circuits are available on the MS-9200UDLS. Press 1 to configure the Primary ANN-BUS or press 2 to configure the Secondary ANN-BUS. The following screen will be displayed for either ANN-BUS circuit:

![ANN-BUS Screen](image)

### ANN-BUS Enabled

The ANN-BUS must be enabled if any modules are connected to the ANN-BUS terminals. To enable the ANN-BUS, press 1 while viewing ANN-BUS screen #1 so that the display reads *ANN-BUS Enabled Yes*. Each press of the 1 key will cause the display to toggle between *ANN-BUS Enabled Yes* and *ANN-BUS Enabled No*.

### Modules Installed

If an ANN-BUS module is installed, press 2 for *Modules Installed* to select ANN-BUS addresses for the module(s). The only difference between the two programming screens are the addresses. The Primary Bus module addresses will have a prefix of “1-” while the Secondary Bus module addresses will have a prefix of “2-”. The following screen will be displayed for either bus circuit:

![ANN-BUS Modules Screen #1](image)

Pressing the down arrow key will allow the programmer to view additional screens displaying Addresses 1-8. To select one or more addresses for the installed module(s), press the number key corresponding to the module address in each screen. The following screen will be displayed for each address:

![ANN-BUS Address Screen](image)

Pressing 1 for *Type* will display the following screens:

- ![Module Type Screen #1](image)
- ![Module Type Screen #2](image)
- ![Module Type Screen #3](image)
Press the number corresponding to the module/device type that is installed with the selected address.

**NOTE:** If the module type selected is the ANN-80, ANN-S/PG, or ANN-ACC or if Not Installed is selected, the ANN-BUS Address Screen shown on the previous page will be displayed following the module selection. The options selected for each of these modules will be the same for all modules of the same type (refer to “ANN-S/PG (Print) Options” on page 117 and “ANN-80 Options” on page 118).

If ANN-I/O, ANN-LED, or ANN-RLY is the selected module type, the following ANN-BUS Address Screen will be displayed:

Since the options for each of these module types can be individually set, pressing 2 for Module Options, while viewing the ANN-BUS Address Screen will display the available options as described below.

**ANN-I/O Options**

Pressing 2 for Module Options while viewing ANN-BUS Address screen when the ANN-I/O option is selected will display the following screen:

The first screen indicates that the ANN-I/O at ANN-BUS address 1 is programmed to annunciate SLC Loop #1 addressable Detectors with addresses 1 through 30. The programming can be changed using ANN-I/O Address Screens 2 and 3.

Pressing 1 while viewing ANN-I/O Address Screen #2 will program the annunciator module to annunciate either Point (addressable device address) information or Zone information.

Pressing 1 while viewing ANN-I/O Address Screen #3 will select the Point or Zone range to be annunciated (refer to the tables in “ANN-I/O Zone Option” on page 110 and “ANN-I/O Point Option” on page 111).

Pressing 2 while viewing ANN-I/O Address Screen #3 will select either addressable detectors or addressable modules to be annunciated.
ANN-I/O Zone Option

If *Zone* is selected as the module option, the first ten LEDs on the first ANN-I/O module will display the system status information. The remaining 30 LEDs on the first module and 40 LEDs on the remaining modules will display the active/alarm status of each zone in the Zone Range programmed for that particular module. The LED assignments for each ANN-I/O module will be as follows.

<table>
<thead>
<tr>
<th>Module LED</th>
<th>Zone Range 0-29</th>
<th>Zone Range 30-69</th>
<th>Zone Range 70-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC Fault</td>
<td>Zone 30</td>
<td>Zone 70</td>
</tr>
<tr>
<td>2</td>
<td>Fire Alarm</td>
<td>Zone 31</td>
<td>Zone 71</td>
</tr>
<tr>
<td>3</td>
<td>Supervisory</td>
<td>Zone 32</td>
<td>Zone 72</td>
</tr>
<tr>
<td>4</td>
<td>Trouble</td>
<td>Zone 33</td>
<td>Zone 73</td>
</tr>
<tr>
<td>5</td>
<td>Alarm Silenced</td>
<td>Zone 34</td>
<td>Zone 74</td>
</tr>
<tr>
<td>6</td>
<td>Earth Fault</td>
<td>Zone 35</td>
<td>Zone 75</td>
</tr>
<tr>
<td>7</td>
<td>Battery Fault</td>
<td>Zone 36</td>
<td>Zone 76</td>
</tr>
<tr>
<td>8</td>
<td>Charger Fault</td>
<td>Zone 37</td>
<td>Zone 77</td>
</tr>
<tr>
<td>9</td>
<td>NAC Fault</td>
<td>Zone 38</td>
<td>Zone 78</td>
</tr>
<tr>
<td>10</td>
<td>Disabled</td>
<td>Zone 39</td>
<td>Zone 79</td>
</tr>
<tr>
<td>11</td>
<td>Zone 00</td>
<td>Zone 40</td>
<td>Zone 80</td>
</tr>
<tr>
<td>12</td>
<td>Zone 01</td>
<td>Zone 41</td>
<td>Zone 81</td>
</tr>
<tr>
<td>13</td>
<td>Zone 02</td>
<td>Zone 42</td>
<td>Zone 82</td>
</tr>
<tr>
<td>14</td>
<td>Zone 03</td>
<td>Zone 43</td>
<td>Zone 83</td>
</tr>
<tr>
<td>15</td>
<td>Zone 04</td>
<td>Zone 44</td>
<td>Zone 84</td>
</tr>
<tr>
<td>16</td>
<td>Zone 05</td>
<td>Zone 45</td>
<td>Zone 85</td>
</tr>
<tr>
<td>17</td>
<td>Zone 06</td>
<td>Zone 46</td>
<td>Zone 86</td>
</tr>
<tr>
<td>18</td>
<td>Zone 07</td>
<td>Zone 47</td>
<td>Zone 87</td>
</tr>
<tr>
<td>19</td>
<td>Zone 08</td>
<td>Zone 48</td>
<td>Zone 88</td>
</tr>
<tr>
<td>20</td>
<td>Zone 09</td>
<td>Zone 49</td>
<td>Zone 89</td>
</tr>
<tr>
<td>21</td>
<td>Zone 10</td>
<td>Zone 50</td>
<td>Zone 90</td>
</tr>
<tr>
<td>22</td>
<td>Zone 11</td>
<td>Zone 51</td>
<td>Zone 91</td>
</tr>
<tr>
<td>23</td>
<td>Zone 12</td>
<td>Zone 52</td>
<td>Zone 92</td>
</tr>
<tr>
<td>24</td>
<td>Zone 13</td>
<td>Zone 53</td>
<td>Zone 93</td>
</tr>
<tr>
<td>25</td>
<td>Zone 14</td>
<td>Zone 54</td>
<td>Zone 94</td>
</tr>
<tr>
<td>26</td>
<td>Zone 15</td>
<td>Zone 55</td>
<td>Zone 95</td>
</tr>
<tr>
<td>27</td>
<td>Zone 16</td>
<td>Zone 56</td>
<td>Zone 96</td>
</tr>
<tr>
<td>28</td>
<td>Zone 17</td>
<td>Zone 57</td>
<td>Zone 97</td>
</tr>
<tr>
<td>29</td>
<td>Zone 18</td>
<td>Zone 58</td>
<td>Zone 98</td>
</tr>
<tr>
<td>30</td>
<td>Zone 19</td>
<td>Zone 59</td>
<td>Zone 99</td>
</tr>
<tr>
<td>31</td>
<td>Zone 20</td>
<td>Zone 60</td>
<td>Not Used</td>
</tr>
<tr>
<td>32</td>
<td>Zone 21</td>
<td>Zone 61</td>
<td>Not Used</td>
</tr>
<tr>
<td>33</td>
<td>Zone 22</td>
<td>Zone 62</td>
<td>Not Used</td>
</tr>
<tr>
<td>34</td>
<td>Zone 23</td>
<td>Zone 63</td>
<td>Not Used</td>
</tr>
<tr>
<td>35</td>
<td>Zone 24</td>
<td>Zone 64</td>
<td>Not Used</td>
</tr>
<tr>
<td>36</td>
<td>Zone 25</td>
<td>Zone 65</td>
<td>Not Used</td>
</tr>
<tr>
<td>37</td>
<td>Zone 26</td>
<td>Zone 66</td>
<td>Not Used</td>
</tr>
<tr>
<td>38</td>
<td>Zone 27</td>
<td>Zone 67</td>
<td>Not Used</td>
</tr>
<tr>
<td>39</td>
<td>Zone 28</td>
<td>Zone 68</td>
<td>Not Used</td>
</tr>
<tr>
<td>40</td>
<td>Zone 29</td>
<td>Zone 69</td>
<td>Not Used</td>
</tr>
</tbody>
</table>
ANN-I/O Point Option

If Point is selected as the module option, the first ten LEDs on the first ANN-I/O module will display the system status information. The remaining 30 LEDs on the first module and 40 LEDs on each additional module will display the active/alarm status of each point in the Point Range programmed for that particular module. The points that will be annunciated on a particular ANN-I/O module depend on the programming options selected as far as the device type (detector or module) to be annunciated. The LED assignments for each ANN-I/O module will be as follows.

<table>
<thead>
<tr>
<th>Module LED</th>
<th>Point Range 1-30</th>
<th>Point Range 31-70</th>
<th>Point Range 71-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC Fault</td>
<td>Point 31</td>
<td>Point 71</td>
</tr>
<tr>
<td>2</td>
<td>Fire Alarm</td>
<td>Point 32</td>
<td>Point 72</td>
</tr>
<tr>
<td>3</td>
<td>Supervisory</td>
<td>Point 33</td>
<td>Point 73</td>
</tr>
<tr>
<td>4</td>
<td>Trouble</td>
<td>Point 34</td>
<td>Point 74</td>
</tr>
<tr>
<td>5</td>
<td>Alarm Silenced</td>
<td>Point 35</td>
<td>Point 75</td>
</tr>
<tr>
<td>6</td>
<td>Earth Fault</td>
<td>Point 36</td>
<td>Point 76</td>
</tr>
<tr>
<td>7</td>
<td>Battery Fault</td>
<td>Point 37</td>
<td>Point 77</td>
</tr>
<tr>
<td>8</td>
<td>Charger Fault</td>
<td>Point 38</td>
<td>Point 78</td>
</tr>
<tr>
<td>9</td>
<td>NAC Fault</td>
<td>Point 39</td>
<td>Point 79</td>
</tr>
<tr>
<td>10</td>
<td>Disabled</td>
<td>Point 40</td>
<td>Point 80</td>
</tr>
<tr>
<td>11</td>
<td>Point 01</td>
<td>Point 41</td>
<td>Point 81</td>
</tr>
<tr>
<td>12</td>
<td>Point 02</td>
<td>Point 42</td>
<td>Point 82</td>
</tr>
<tr>
<td>13</td>
<td>Point 03</td>
<td>Point 43</td>
<td>Point 83</td>
</tr>
<tr>
<td>14</td>
<td>Point 04</td>
<td>Point 44</td>
<td>Point 84</td>
</tr>
<tr>
<td>15</td>
<td>Point 05</td>
<td>Point 45</td>
<td>Point 85</td>
</tr>
<tr>
<td>16</td>
<td>Point 06</td>
<td>Point 46</td>
<td>Point 86</td>
</tr>
<tr>
<td>17</td>
<td>Point 07</td>
<td>Point 47</td>
<td>Point 87</td>
</tr>
<tr>
<td>18</td>
<td>Point 08</td>
<td>Point 48</td>
<td>Point 88</td>
</tr>
<tr>
<td>19</td>
<td>Point 09</td>
<td>Point 49</td>
<td>Point 89</td>
</tr>
<tr>
<td>20</td>
<td>Point 10</td>
<td>Point 50</td>
<td>Point 90</td>
</tr>
<tr>
<td>21</td>
<td>Point 11</td>
<td>Point 51</td>
<td>Point 91</td>
</tr>
<tr>
<td>22</td>
<td>Point 12</td>
<td>Point 52</td>
<td>Point 92</td>
</tr>
<tr>
<td>23</td>
<td>Point 13</td>
<td>Point 53</td>
<td>Point 93</td>
</tr>
<tr>
<td>24</td>
<td>Point 14</td>
<td>Point 54</td>
<td>Point 94</td>
</tr>
<tr>
<td>25</td>
<td>Point 15</td>
<td>Point 55</td>
<td>Point 95</td>
</tr>
<tr>
<td>26</td>
<td>Point 16</td>
<td>Point 56</td>
<td>Point 96</td>
</tr>
<tr>
<td>27</td>
<td>Point 17</td>
<td>Point 57</td>
<td>Point 97</td>
</tr>
<tr>
<td>28</td>
<td>Point 18</td>
<td>Point 58</td>
<td>Point 98</td>
</tr>
<tr>
<td>29</td>
<td>Point 19</td>
<td>Point 59</td>
<td>Point 99</td>
</tr>
<tr>
<td>30</td>
<td>Point 20</td>
<td>Point 60</td>
<td>Not Used</td>
</tr>
<tr>
<td>31</td>
<td>Point 21</td>
<td>Point 61</td>
<td>Not Used</td>
</tr>
<tr>
<td>32</td>
<td>Point 22</td>
<td>Point 62</td>
<td>Not Used</td>
</tr>
<tr>
<td>33</td>
<td>Point 23</td>
<td>Point 63</td>
<td>Not Used</td>
</tr>
<tr>
<td>34</td>
<td>Point 24</td>
<td>Point 64</td>
<td>Not Used</td>
</tr>
<tr>
<td>35</td>
<td>Point 25</td>
<td>Point 65</td>
<td>Not Used</td>
</tr>
<tr>
<td>36</td>
<td>Point 26</td>
<td>Point 66</td>
<td>Not Used</td>
</tr>
<tr>
<td>37</td>
<td>Point 27</td>
<td>Point 67</td>
<td>Not Used</td>
</tr>
<tr>
<td>38</td>
<td>Point 28</td>
<td>Point 68</td>
<td>Not Used</td>
</tr>
<tr>
<td>39</td>
<td>Point 29</td>
<td>Point 69</td>
<td>Not Used</td>
</tr>
<tr>
<td>40</td>
<td>Point 30</td>
<td>Point 70</td>
<td>Not Used</td>
</tr>
</tbody>
</table>
ANN-LED Options

Pressing 2 for Module Options while viewing the ANN-BUS Address Screen when the ANN-LED option is selected, will display the following screen:

The first screen indicates that the ANN-LED at the selected ANN-BUS address is programmed to annunciate Alarms, Supervisories, and Troubles for SLC Loop #1 addressable Detectors with addresses 1 through 10. The programming can be changed using ANN-LED Address Screens 2 and 3.

Pressing 1 while viewing ANN-LED Address Screen #2 will program the annunciator module to annunciate either Point (addressable device address) information or Zone information.

Pressing 2 while viewing ANN-LED Address Screen #2 will program the annunciator module to annunciate only Alarms for addressable device addresses 1-30 or Alarms, Supervisories, and Troubles for addressable device addresses 1-10.

Pressing 1 while viewing ANN-LED Address Screen #3 will select the Point or Zone range to be annunciated - refer to the tables in “ANN-LED Zone Option - Alarm Only (for use with ANN-RLED module)” on page 112 and “ANN-LED Point Option - Alarm Only (for use with ANN-RLED module)” on page 114.

Pressing 2 while viewing ANN-LED Address Screen #3 will select either addressable detectors or addressable modules to be annunciated.

ANN-LED Zone Option - Alarm Only (for use with ANN-RLED module)

If Zone is selected as the module option, and the module is programmed to annunciate alarms only, the first ten LEDs on the first ANN-LED module will display the system status information. The remaining 30 LEDs on the first module and the last 30 LEDs on the remaining modules will display the active/alarms status of each zone in the Zone Range programmed for that particular module. The LED assignments for each ANN-LED module will be as follows.

<table>
<thead>
<tr>
<th>Alarm Silenced</th>
<th>NAC 1 Fault</th>
<th>NAC 2 Fault</th>
<th>NAC 3 Fault</th>
<th>NAC 4 Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Fault</td>
<td>Battery Fault</td>
<td>Charger Fault</td>
<td>Disabled</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Zone 00 Active/Alarm</td>
<td>Zone 01 Active/Alarm</td>
<td>Zone 02 Active/Alarm</td>
<td>Zone 03 Active/Alarm</td>
<td>Zone 04 Active/Alarm</td>
</tr>
<tr>
<td>Zone 05 Active/Alarm</td>
<td>Zone 06 Active/Alarm</td>
<td>Zone 07 Active/Alarm</td>
<td>Zone 08 Active/Alarm</td>
<td>Zone 09 Active/Alarm</td>
</tr>
<tr>
<td>Zone 10 Active/Alarm</td>
<td>Zone 11 Active/Alarm</td>
<td>Zone 12 Active/Alarm</td>
<td>Zone 13 Active/Alarm</td>
<td>Zone 14 Active/Alarm</td>
</tr>
<tr>
<td>Zone 15 Active/Alarm</td>
<td>Zone 16 Active/Alarm</td>
<td>Zone 17 Active/Alarm</td>
<td>Zone 18 Active/Alarm</td>
<td>Zone 19 Active/Alarm</td>
</tr>
<tr>
<td>Zone 20 Active/Alarm</td>
<td>Zone 21 Active/Alarm</td>
<td>Zone 22 Active/Alarm</td>
<td>Zone 23 Active/Alarm</td>
<td>Zone 24 Active/Alarm</td>
</tr>
<tr>
<td>Zone 25 Active/Alarm</td>
<td>Zone 26 Active/Alarm</td>
<td>Zone 27 Active/Alarm</td>
<td>Zone 28 Active/Alarm</td>
<td>Zone 29 Active/Alarm</td>
</tr>
</tbody>
</table>

Table 3.2 ANN-RLED Module #1
The LED assignments for the modules annunciating Zone Ranges 60 - 89 and 90 - 99, will follow the same pattern as the second ANN-RLED module.

ANN-LED Zone Option - Alarm, Trouble and Supervisory

If Zone is selected as the module option, and the module is programmed to annunciate alarms, troubles and supervisories, the first ten LEDs on the first ANN-LED module will display the system status information. The remaining 30 LEDs on the first module and the last 30 LEDs on the remaining modules will display the alarm, trouble and supervisory status for each of the ten zones in the Zone Range programmed for that particular module. The LED assignments for each ANN-LED module will be as follows.

<table>
<thead>
<tr>
<th>Alarm Silenced</th>
<th>NAC 1 Fault</th>
<th>NAC 2 Fault</th>
<th>NAC 3 Fault</th>
<th>NAC 4 Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Fault</td>
<td>Battery Fault</td>
<td>Charger Fault</td>
<td>Disabled</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Zone 00 Active/Alarm</td>
<td>Zone 01 Active/Alarm</td>
<td>Zone 02 Active/Alarm</td>
<td>Zone 03 Active/Alarm</td>
<td>Zone 04 Active/Alarm</td>
</tr>
<tr>
<td>Zone 00 Trouble</td>
<td>Zone 01 Trouble</td>
<td>Zone 02 Trouble</td>
<td>Zone 03 Trouble</td>
<td>Zone 04 Trouble</td>
</tr>
<tr>
<td>Zone 00 Supervisory</td>
<td>Zone 01 Supervisory</td>
<td>Zone 02 Supervisory</td>
<td>Zone 13 Supervisory</td>
<td>Zone 04 Supervisory</td>
</tr>
<tr>
<td>Zone 05 Active/Alarm</td>
<td>Zone 06 Active/Alarm</td>
<td>Zone 07 Active/Alarm</td>
<td>Zone 08 Active Alarm</td>
<td>Zone 09 Active/Alarm</td>
</tr>
<tr>
<td>Zone 05 Trouble</td>
<td>Zone 06 Trouble</td>
<td>Zone 07 Trouble</td>
<td>Zone 08 Trouble</td>
<td>Zone 09 Trouble</td>
</tr>
<tr>
<td>Zone 05 Supervisory</td>
<td>Zone 06 Supervisory</td>
<td>Zone 07 Supervisory</td>
<td>Zone 08 Supervisory</td>
<td>Zone 09 Supervisory</td>
</tr>
</tbody>
</table>

Table 3.4 ANN-LED Module #1
Programming

Master Programming Level

The LED assignments for the modules annunciating Zone Ranges 20 - 29, 30 - 39, 40 - 49, 50 - 59, 60 - 69, 70 - 79, 80 - 89 and 90 - 99, will follow the same pattern as the second ANN-LED module.

### ANN-LED Point Option - Alarm Only (for use with ANN-RLED module)

If **Point** is selected as the module option and the module is programmed to annunciate **alarms** only, the first ten LEDs on the first ANN-LED module will display the system status information. The remaining 30 LEDs on the first module and the last 30 LEDs on each additional module will display the active/alarm status of each point in the Point Range programmed for that particular module. The points that will be annunciated on a particular ANN-LED module depend on the programming options selected as far as which SLC loop and the device type (detector or module) to be annunciated. The LED assignments for each ANN-LED module will be as follows.

<table>
<thead>
<tr>
<th>Zone 10</th>
<th>Zone 11</th>
<th>Zone 12</th>
<th>Zone 13</th>
<th>Zone 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Zone 10</td>
<td>Zone 11</td>
<td>Zone 12</td>
<td>Zone 13</td>
<td>Zone 14</td>
</tr>
<tr>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
</tr>
<tr>
<td>Zone 10</td>
<td>Zone 11</td>
<td>Zone 12</td>
<td>Zone 13</td>
<td>Zone 14</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
</tr>
<tr>
<td>Zone 15</td>
<td>Zone 16</td>
<td>Zone 17</td>
<td>Zone 18</td>
<td>Zone 19</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Zone 15</td>
<td>Zone 16</td>
<td>Zone 17</td>
<td>Zone 18</td>
<td>Zone 19</td>
</tr>
<tr>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
</tr>
<tr>
<td>Zone 15</td>
<td>Zone 16</td>
<td>Zone 17</td>
<td>Zone 18</td>
<td>Zone 19</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
</tr>
</tbody>
</table>

#### Table 3.5 ANN-LED Module #2

<table>
<thead>
<tr>
<th>Alarm Silenced</th>
<th>NAC 1 Fault</th>
<th>NAC 2 Fault</th>
<th>NAC 3 Fault</th>
<th>NAC 4 Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Fault</td>
<td>Battery Fault</td>
<td>Charger Fault</td>
<td>Disabled</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Point 01</td>
<td>Point 02</td>
<td>Point 03</td>
<td>Point 04</td>
<td>Point 05</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 06</td>
<td>Point 07</td>
<td>Point 08</td>
<td>Point 09</td>
<td>Point 10</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 11</td>
<td>Point 12</td>
<td>Point 13</td>
<td>Point 14</td>
<td>Point 15</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 16</td>
<td>Point 17</td>
<td>Point 18</td>
<td>Point 19</td>
<td>Point 20</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 21</td>
<td>Point 22</td>
<td>Point 23</td>
<td>Point 24</td>
<td>Point 25</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 26</td>
<td>Point 27</td>
<td>Point 28</td>
<td>Point 29</td>
<td>Point 30</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
</tbody>
</table>

#### Table 3.6 ANN-RLED Module #1 (Point Range 01 - 30)
The LED assignments for the modules annunciating Point Ranges 61 - 90 and 91 - 99, will follow the same pattern as the second ANN-RLED module.

**ANN-LED Point Option - Alarm, Trouble and Supervisory**

If *Point* is selected as the module option, and the module is programmed to annunciate *alarms, troubles and supervisories*, the first ten LEDs on the first ANN-LED module will display the system status information. The remaining 30 LEDs on the first module and the last 30 LEDs on the remaining modules will display the alarm, trouble and supervisory status for each of the ten zones in the Point Range programmed for that particular module. The LED assignments for each ANN-LED module will be as follows.

<table>
<thead>
<tr>
<th>Not Used</th>
<th>Not Used</th>
<th>Not Used</th>
<th>Not Used</th>
<th>Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 31</td>
<td>Point 32</td>
<td>Point 33</td>
<td>Point 34</td>
<td>Point 35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 36</td>
<td>Point 37</td>
<td>Point 38</td>
<td>Point 39</td>
<td>Point 40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 41</td>
<td>Point 42</td>
<td>Point 43</td>
<td>Point 44</td>
<td>Point 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 46</td>
<td>Point 47</td>
<td>Point 48</td>
<td>Point 49</td>
<td>Point 50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 51</td>
<td>Point 52</td>
<td>Point 53</td>
<td>Point 54</td>
<td>Point 55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
<th>Active/Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 56</td>
<td>Point 57</td>
<td>Point 58</td>
<td>Point 59</td>
<td>Point 60</td>
</tr>
</tbody>
</table>

### Table 3.7 ANN-RLED Module #2 (Point Range 31 - 60)

<table>
<thead>
<tr>
<th>Alarm Silenced</th>
<th>NAC 1 Fault</th>
<th>NAC 2 Fault</th>
<th>NAC 3 Fault</th>
<th>NAC 4 Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Fault</td>
<td>Battery Fault</td>
<td>Charger Fault</td>
<td>Disabled</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Point 01</td>
<td>Point 02</td>
<td>Point 03</td>
<td>Point 04</td>
<td>Point 05</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 01</td>
<td>Point 02</td>
<td>Point 03</td>
<td>Point 04</td>
<td>Point 05</td>
</tr>
<tr>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
</tr>
<tr>
<td>Point 01</td>
<td>Point 02</td>
<td>Point 03</td>
<td>Point 04</td>
<td>Point 05</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
</tr>
<tr>
<td>Point 06</td>
<td>Point 07</td>
<td>Point 08</td>
<td>Point 09</td>
<td>Point 10</td>
</tr>
<tr>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
<td>Active/Alarm</td>
</tr>
<tr>
<td>Point 06</td>
<td>Point 07</td>
<td>Point 08</td>
<td>Point 09</td>
<td>Point 10</td>
</tr>
<tr>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
<td>Trouble</td>
</tr>
<tr>
<td>Point 06</td>
<td>Point 07</td>
<td>Point 08</td>
<td>Point 09</td>
<td>Point 10</td>
</tr>
<tr>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
<td>Supervisory</td>
</tr>
</tbody>
</table>

### Table 3.8 ANN-LED Module #1 (Point Range 01 - 10)
The LED assignments for the modules annunciating Point Ranges 21 - 30, 31 - 40 and 41 - 50, 51 - 60, 61 - 70, 71 - 80, 81 - 90 and 91 - 99, will follow the same pattern as the second ANN-LED Module.

**ANN-RLY Options**

Pressing 2 for *Module Options* while viewing the ANN-BUS Address Screen when the ANN-RLY option is selected, will cause the following screen to be displayed:

![ANN-RLY Options Screen](image)

The ANN-RLY module provides ten Form-C relays which can be programmed for various functions. The initial screen displays Relays 1 through 3. Pressing the down arrow key will display the remaining relays for this module.

To program any of the ANN-RLY relays, while viewing the appropriate ANN-RLY Option screen, press the number key corresponding to the relay to be programmed. Following is a list of the available programming options for each relay:

- Alarm
- Supervisory
- Supervisory AR
- Trouble
- Comm Fail
- Process Mon
- Process Mon AR
- AC Loss
- Hazard
- Medical
- Silenceable Alarm
- Zone Active XX
Auto-Configure

The ANN-BUS Auto-Configure features allows the programmer to quickly bring all installed ANN-BUS modules online on the selected ANN-BUS. The software will search the selected circuit for all ANN-BUS modules and automatically program the device type and address into the system. For the Auto-Configure to work, the selected ANN-BUS must be enabled, the annunciators must be connected/powered, and a unique address must be set on each annunciator.

Pressing 3 while viewing ANN-BUS Screen #1 will begin the Auto-Configure process and cause the following screen to be displayed:

![Auto-Configure Screen](image)

ANN-BUS

Pressing 3 for ANN-BUS Options, while viewing the ANN-BUS Select screen, will display the following screen.

![ANN-BUS Options Screen](image)

ANN-S/PG (Print) Options

The Print option allows the programmer to configure the optional printer. Pressing 1 while viewing the ANN-BUS screen will display the following screens:

![ANN-S/PG Options Screen #1](image)

![ANN-S/PG Options Screen #2](image)

![ANN-S/PG Options Screen #3](image)

Pressing 1 for Port while viewing ANN-S/PG Options screen #1 will allow the programmer to select between a Parallel and Serial Port for printer connection. Each press of the 1 key will cause the display to toggle between Port PAR (parallel) and Port SER (serial). It is important to note that the interface selected determines which options are available to the user.

If the Parallel Port option is selected, the user has the option to supervise the printer and select an offline timer for the supervision by pressing 2 for Printer Supervision while viewing Print Options screen #1. Each press of the 2 key will cause the display to toggle between Printer Supv NO for no supervision and Printer Supv YES for printer supervision. Note that this option is not selectable if the Serial Port option has been selected.

If the Parallel Port option is selected, the user has the ability to select an Offline Timer by pressing 3 while viewing Print Options screen #1. The resultant screen allows the programmer to program the Offline Timer for a delay of between 0 and 255 seconds before loss of printer supervision is reported as a trouble.

If the Serial Port option is selected, the Printer Supv and Offline Timer options will not be available. The Baud Rate, Data Bits, Parity and Stop Bits options are only available when the Serial Port option has been selected.

Pressing 1 for Baud Rate while viewing ANN-S/PG Options screen #2 will cause a screen to appear which allows the user to select a Baud Rate of 19200, 9600, or 2400.

Pressing 2 for Data Bits while viewing ANN-S/PG Options screen #2 will cause a screen to appear which allows the user to select 7 or 8 Data Bits.
Pressing 3 for Parity while viewing ANN-S/PG Options screen #2 will cause a screen to appear which allows the user to select between No Parity, Even Parity, or Odd Parity.

Pressing 1 for Stop Bits while viewing ANN-S/PG Options screen #3 will cause a screen to appear which allows the user to select between 1.0 or 2.0 Stop Bits.

**ANN-LED Options**

This option allows the programmer to configure the optional ANN-LED annunciator. Pressing 2 while viewing the ANN-BUS screen will display the following screens.

The Piezo Enable option allows the programmer to select whether the piezo sounder on any installed ANN-LED module will ever sound. Pressing 1 while viewing the ANN-LED Options Screen causes the display to toggle between Piezo Enable Yes and Piezo Enable No.

The Lamp Test Enable (LMP TST ENABLE) option allows the programmer to select whether the Lamp Test button on any installed ANN-LED annunciator will function normally or always be ignored. Pressing 2 while viewing the ANN-LED Options Screen causes the display to toggle between Lmp Tst Enable Yes (Lamp Test button functions normally) and Lmp Tst Enable No (Lamp Test button never functions).

The Silence Button Enable (SIL BTN ENABLE) option allows the programmer to select whether the Silence button on any installed ANN-LED annunciator will function normally or always be ignored. Pressing 3 while viewing the ANN-LED Options Screen causes the display to toggle between Sil Btn Enable Yes (Silence button functions normally) and Sil Btn Enable No (Silence button never functions).

**ANN-80 Options**

Pressing 3 while viewing the ANN-BUS screen will display the following screen:

The Piezo Enable option allows the programmer to select whether the piezo sounder on any installed ANN-80 module will ever sound. Pressing 1 while viewing the ANN-80 Options Screen #1 causes the display to toggle between Piezo Enable Yes and Piezo Enable No.

The Lock Enable option allows the programmer to select whether or not any installed ANN-80 annunciator must be unlocked by its key before any annunciator key presses will function. Pressing 2 while viewing the ANN-80 Options Screen #1 causes the display to toggle between Lock Enable Yes (annunciator must be unlocked for keys to function) and Lock Enable No (lock position is ignored).

The Acknowledge Button Enable (ACK BTN ENABLE) option allows the programmer to select whether the Ack/Step button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 3 while viewing the ANN-80 Options Screen #1 causes the display to toggle between Ack Btn Enable Yes (Ack/Step button functions normally) and Ack Btn Enable No (Ack/Step button never functions).

The Silence Button Enable (SIL BTN ENABLE) option allows the programmer to select whether the Silence button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 1 while viewing the ANN-80 Options Screen #2 causes the display to toggle between Sil Btn Enable Yes (Silence button functions normally) and Sil Btn Enable No (Silence button never functions).
The Reset Button Enable (RST BTN ENABLE) option allows the programmer to select whether the Reset button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 2 while viewing the ANN-80 Options Screen #2 causes the display to toggle between Rst Btn Enable Yes (Reset button functions normally) and Rst Btn Enable No (Reset button never functions).

The Drill Button Enable (DRL BTN ENABLE) option allows the programmer to select whether the Drill button on any installed ANN-80 annunciator will function normally or always be ignored. Pressing 3 while viewing the ANN-80 Options Screen #2 causes the display to toggle between Drl Btn Enable Yes (Drill button functions normally) and Drl Btn Enable No (Drill button never functions).

**Onboard DACT**

The Onboard DACT (Digital Alarm Communicator/Transmitter) provides communication to a central station. Pressing 2 while viewing the Option Module Screen will cause the following screens to be displayed:

- **Onboard DACT Enable**
  
  To enable the onboard DACT, press 1 while viewing Onboard DACT Screen #1 until the display reads Enabled Yes. The display will toggle between Enabled Yes and Enabled No with each press of the key.

- **Primary Phone**
  
  Press 2 while viewing On Board DACT Screen #1 to program the type of primary phone line being connected to the DACT. The following screen will be displayed:

  ![Primary Phone Line Screen](image)

  To select the type, press 1 while viewing the Primary Phone Line screen. The following screen will be displayed:

  ![Primary Phone Type Screen](image)

  Press 1 to select Touchtone dialing, 2 to select Rotary dialing with a make/break ratio of 67/33 or 3 to select Rotary dialing with a make/break ratio of 62/38.

- **Secondary Phone**
  
  Press 3 while viewing On Board DACT Screen #1 to program the type of secondary phone line being connected to the DACT. The following screen will be displayed:

  ![Secondary Phone Line Screen](image)
To select the type, press 1 while viewing the Secondary Phone Line screen. The following screen will be displayed:

```
PHONE LINE
1=TOUCHTONE
2=ROTARY 67/33
3=ROTARY 62/38
```

Press 1 to select Touchtone dialing, 2 to select Rotary dialing with a make/break ratio of 67/33, or 3 to select Rotary dialing with a make/break ratio of 62/38.

### Service Terminal

The FACP can be programmed remotely from a PC using a modem and telephone line. Information can also be retrieved from the FACP using the same method. The Upload/Download option allows an operator to set the necessary parameters to allow the uploading and downloading of data between the FACP and PC. The Service Terminal selection provides the means for entering these parameters.

Pressing 1 while viewing On Board DACT Screen #2 will cause the following screen to appear:

```
SERVICE TERMINAL
1=RING COUNT 00
```

### Ring Count

The ring count designates the number of rings allowed on the phone line prior to answering an incoming call from a service terminal. The factory default is 0 which means the control panel will not answer an incoming call. This entry may be programmed for 1 to 25 rings.

To change the Ring Count, press 1 while viewing the Service Terminal Screen #2. The following screen will be displayed:

```
RING COUNT
RANGE 0-25 RANGE
```

A flashing cursor will appear in the lower left corner of the display. Enter the two-digit ring count which can be a value between 00 and 25. After the second digit is entered, the display will return to the Service Terminal screen.

### Central Station

Central Station programming configures the control panel DACT for contacting the central station. Pressing 2 while viewing On Board DACT Screen #2 will cause the following screens to be displayed:

```
CENTRAL STATION
1=REPORTING DISABLED
2=REPORT BACKUP
3=CALL LIMIT
```
```
CENTRAL STATION
1=PRIMARY
2=SECONDARY
3=REPORT STYLE
```

### Reporting Enable

To enable the DACT for reporting FACP activity to the central station, press 1 while viewing Central Station Screen #1 so the display reads Reporting Enabled. Each press of the 1 key will toggle the display between Reporting Disabled and Reporting Enabled.
Trouble Call Limit (Dialer Runaway Prevention)

The Call Limit option limits the number of DACT trouble calls to the Central Station, to a programmed amount between 0 and 99, for each unique trouble within a 24 hour period. Separate limit counters keep track of each unique type of trouble. Note that the number of phone line (communication) faults called to the Central Station are not limited by this feature. No subsequent restoral message is sent to the Central Station(s) for a particular trouble whose call limit has been reached. Local DACT annunciation will still track the particular trouble and restoral.

To set the Trouble Call Limit, press 3 while viewing Central Station Screen #1. The following screen will be displayed.

![Trouble Call Limit Screen](image)

Enter a value between 00 and 99, then press Enter to set the Call Limit to this value.

**NOTE:** Entering a value of 00 will disable the Trouble Call Limit allowing the DACT to call the Central Station an unlimited number of times.

Central Station Primary and Secondary Phone Numbers

Pressing 1 for Primary or 2 for Secondary will display the following screens.

*Note that the following information must be entered for both the Primary and Secondary Central Station Phone Numbers.*

![Central Station Primary and Secondary Phone Numbers](image)

Test Time Interval

Pressing 1 while viewing Primary/Secondary Screen #1 will cause the following screens to be displayed:

![Test Time Interval Screen](image)

The test report sent to the Central Station phone number may be sent once every 6, 8, 12, or 24 hours. Select the desired Test Time Interval by pressing the corresponding digit in the screens shown above.
Account Code

Pressing 2 while viewing Primary/Secondary Screen #1 will cause the following screen to be displayed:

![Account Codes Screen]

The Account Code, which is assigned by a Central Station, depends on the communication format being used. The Account Code screen will have a flashing cursor in the lower left corner. Enter the supplied account code using 0 - 9 and A- F keys.

24 Hour Test Time

Pressing 3 while viewing Primary/Secondary Screen #1 will cause the following screen to be displayed:

![24 Hour Test Time Screen]

Use the 24 Hour Test Time screen to program the time that the DACT will transmit the 24 Hour Test to the Central Station. A flashing cursor will appear in the lower left corner of the screen. Enter a four digit number representing the test time using military time (0000 = midnight and 2359 = 11:59PM).

Phone Number

Pressing 1 while viewing Primary/Secondary Screen #2 will cause the following screen to be displayed:

![Phone Number Screen]

The Phone Number screen is used to enter the Central Station phone number that the DACT will be contacting. A maximum of 20 characters can be entered with valid entries being 0 - 9 and A - C where A = *, B = # and C = 2 seconds pause.

A flashing cursor will appear in the lower left corner of the screen. Enter the first digit then press the right arrow key to move the cursor to the right one position. Enter the second digit and repeat the process until all digits are entered. Press the Enter key to store the phone number in memory.

Enter the digits as you would like the number to be dialed. For example, if it’s necessary to dial 9 before dialing a number outside the building, you may wish to pause after dialing 9. Enter 9 followed by D for a three second pause or E for a five second pause then the phone number followed by an F to indicate the end of the number.

Communication Format

Pressing 1 while viewing Primary/Secondary Screen #3 will cause the following screen to be displayed:

![Communication Format Screen]

Pressing 1 while viewing Primary/Secondary Screen #3 will cause the following screen to be displayed:
The Communication Format is determined by the type of receiver that the DACT is transmitting to. Consult your Central Station for proper selection or consult our factory representatives. For any format chosen, the control panel automatically programs all of the event codes.

Select the Communication Format by pressing the corresponding number key while viewing the Comm Format screen. The following table describes each format:

<table>
<thead>
<tr>
<th>Screen Selection</th>
<th>Communication Format Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEMCO CONTACT ID</td>
<td>Contact ID, DTMF, 1400/2300 ACK</td>
</tr>
<tr>
<td>SIA 8</td>
<td>Security Industry Association, 8 messages per call</td>
</tr>
<tr>
<td>SIA 20</td>
<td>Security Industry Association, 20 messages per call</td>
</tr>
</tbody>
</table>

### Table 3.10 Communication Formats

#### Event Codes

Pressing 1 while viewing Primary/Secondary Screen #4 will cause the following screen to be displayed:

Pressing the down arrow key allows viewing of all Events associated with the selected Communication Format. Pressing the number corresponding to the event displayed in each screen will display its default event code which can be customized by the programmer. For example, pressing 1 for Pull Station will display the following screen which allows the Event Code to be changed from the default value.

The tables on the following pages list all of the Events and their default Event Codes for the various Communication Formats.

### Ademco Contact ID & SIA Formats

The information shown in Table 3.11 is automatically programmed for the Central Station phone number Event Codes when the Ademco Contact ID or SIA Format is selected. Enter 0s for an Event Code Setting to disable the report. Disabled reports will not get called to the Central Station. The programmer may enable the Event Types in programming as described on the previous page.

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Ademco Contact ID</th>
<th>SIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Zone</td>
<td>Point</td>
</tr>
<tr>
<td>PULL STATION</td>
<td>115</td>
<td>Zone</td>
</tr>
<tr>
<td>MON-USER-DEF-1</td>
<td>115</td>
<td>Zone</td>
</tr>
<tr>
<td>WATERFLOW</td>
<td>113</td>
<td>Zone</td>
</tr>
<tr>
<td>MON-USER-DEF-2</td>
<td>113</td>
<td>Zone</td>
</tr>
<tr>
<td>SMOKE (PHOTO)</td>
<td>111</td>
<td>Zone</td>
</tr>
<tr>
<td>DET-USER-DEF-1</td>
<td>111</td>
<td>Zone</td>
</tr>
<tr>
<td>SMOKE (ION)</td>
<td>111</td>
<td>Zone</td>
</tr>
<tr>
<td>DET-USER-DEF-2</td>
<td>111</td>
<td>Zone</td>
</tr>
<tr>
<td>HEAT DETECT</td>
<td>114</td>
<td>Zone</td>
</tr>
<tr>
<td>DET-USER-DEF-3</td>
<td>114</td>
<td>Zone</td>
</tr>
<tr>
<td>SMOKE DUCT-P</td>
<td>116</td>
<td>Zone</td>
</tr>
<tr>
<td>DET-USER-DEF-4</td>
<td>116</td>
<td>Zone</td>
</tr>
</tbody>
</table>

### Table 3.11 Event Codes
<table>
<thead>
<tr>
<th>Event Code</th>
<th>Zone</th>
<th>Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOTO W/HEAT</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>DET-USER-DEF-5</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>DUCT SUPERV</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>DET-USER-DEF-6</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>PHOTO SUPERV</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>DET-USER-DEF-7</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>PHOTO ADAPT</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>DET-USER-DEF-8</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>DET-USER-DEF-9</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>MONITOR</td>
<td>110</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>MON-USER-DEF-3</td>
<td>110</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>SMOKE CONV</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>MON-USER-DEF-5</td>
<td>111</td>
<td>Zone</td>
<td>Point FA FH</td>
</tr>
<tr>
<td>HEAT CONVENTION</td>
<td>114</td>
<td>Zone</td>
<td>Point KA KH</td>
</tr>
<tr>
<td>MON-USER-DEF-6</td>
<td>114</td>
<td>Zone</td>
<td>Point KA KH</td>
</tr>
<tr>
<td>MEDIC ALERT</td>
<td>100</td>
<td>Zone</td>
<td>Point MA MH</td>
</tr>
<tr>
<td>MON-USER-DEF-7</td>
<td>100</td>
<td>Zone</td>
<td>Point MA MH</td>
</tr>
<tr>
<td>HAZARD ALERT</td>
<td>150</td>
<td>Zone</td>
<td>Point PA PH</td>
</tr>
<tr>
<td>MON-USER-DEF-8</td>
<td>150</td>
<td>Zone</td>
<td>Point PA PH</td>
</tr>
<tr>
<td>TORNADO ALERT</td>
<td>150</td>
<td>Zone</td>
<td>Point PA PH</td>
</tr>
<tr>
<td>MON-USER-DEF-9</td>
<td>150</td>
<td>Zone</td>
<td>Point PA PH</td>
</tr>
<tr>
<td>MON-PHONE</td>
<td>000</td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>MON-USER-DEF-10</td>
<td>000</td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>TAMPER</td>
<td>144</td>
<td>Zone</td>
<td>Point TA TH</td>
</tr>
<tr>
<td>MON-USER-DEF-11</td>
<td>144</td>
<td>Zone</td>
<td>Point TA TH</td>
</tr>
<tr>
<td>MON SUPERV</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>MON-USER-DEF-12</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>MON SUPERV AUTO</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>MON-USER-DEF-13</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>HVAC OVRIDE</td>
<td>200</td>
<td>Zone</td>
<td>Point FS FV</td>
</tr>
<tr>
<td>POWER MON</td>
<td>330</td>
<td>Zone</td>
<td>Point AT AR</td>
</tr>
<tr>
<td>MON-USER-DEF-14</td>
<td>330</td>
<td>Zone</td>
<td>Point AT AR</td>
</tr>
<tr>
<td>PROCESS MON</td>
<td>000</td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>MON-USER-DEF-15</td>
<td>000</td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>PROCMON AR</td>
<td>000</td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>MON-USER-DEF-17</td>
<td>000</td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>POINT_FAULT</td>
<td>380</td>
<td>Zone</td>
<td>Point FT FJ</td>
</tr>
<tr>
<td>POINT_DISABLE</td>
<td>570</td>
<td>Zone</td>
<td>Point FB FU</td>
</tr>
<tr>
<td>AC_FAIL</td>
<td>301</td>
<td>000</td>
<td>000 AT AR</td>
</tr>
<tr>
<td>DRILL</td>
<td>604</td>
<td>000</td>
<td>000 FI FK</td>
</tr>
<tr>
<td>SLC 1 OPEN FAULT</td>
<td>371</td>
<td>000</td>
<td>000 ET1 ER1</td>
</tr>
<tr>
<td>SLC 1 SHORT FAULT</td>
<td>372</td>
<td>000</td>
<td>000 ET1 ER1</td>
</tr>
<tr>
<td>GROUND FAULT</td>
<td>310</td>
<td>000</td>
<td>000 ET ER</td>
</tr>
<tr>
<td>LOW BATTERY</td>
<td>302</td>
<td>000</td>
<td>000 YT YR</td>
</tr>
<tr>
<td>NO_BATTERY</td>
<td>311</td>
<td>000</td>
<td>000 YT YR</td>
</tr>
<tr>
<td>TELCO LINE 1</td>
<td>351</td>
<td>000</td>
<td>000 LT LR</td>
</tr>
<tr>
<td>TELCO LINE 2</td>
<td>352</td>
<td>000</td>
<td>000 LT LR</td>
</tr>
<tr>
<td>COMM FAULT 1</td>
<td>354</td>
<td>001</td>
<td>001 YC YK</td>
</tr>
<tr>
<td>COMM FAULT 2</td>
<td>354</td>
<td>002</td>
<td>002 YC YK</td>
</tr>
<tr>
<td>TOTAL COMM FLT</td>
<td>354</td>
<td>000</td>
<td>N/A N/A ER1</td>
</tr>
<tr>
<td>TOTAL COMM FLT</td>
<td>354</td>
<td>000</td>
<td>N/A N/A ER1</td>
</tr>
<tr>
<td>Printer Fault</td>
<td>336</td>
<td>000</td>
<td>000 VT VR</td>
</tr>
<tr>
<td>NAC 1 FAULT</td>
<td>321</td>
<td>001</td>
<td>001 YA YR</td>
</tr>
<tr>
<td>NAC 2 FAULT</td>
<td>322</td>
<td>002</td>
<td>002 YA YR</td>
</tr>
<tr>
<td>NAC 3 FAULT</td>
<td>326</td>
<td>003</td>
<td>003 YA YR</td>
</tr>
<tr>
<td>NAC 4 FAULT</td>
<td>327</td>
<td>004</td>
<td>004 YA YR</td>
</tr>
<tr>
<td>24 VDC FAULT</td>
<td>300</td>
<td>000</td>
<td>000 YP YQ</td>
</tr>
<tr>
<td>VOICE EVAC FAULT</td>
<td>330</td>
<td>000</td>
<td>000 ET ER</td>
</tr>
</tbody>
</table>

Table 3.11 Event Codes (Continued)
Pressing 3 while viewing Central Station Screen #2 will cause the Report Style display to toggle between Point and Zone. Setting the Report Style to Point will program the DACT to report individual point status to the Central Station. The control panel is capable of monitoring a total of 198 addressable devices. Setting the Report Style to Zone will program the DACT to report zone status to the Central Station. The control panel is capable of monitoring a total of 99 individual zones.

**NOTES:**
1. Detector Address 01 will be reported to the Central Station as Point 01, Detector Address 02 as Point 02, with reports continuing in a similar fashion all the way up to Detector Address 99 which will be reported as Point 99.
2. Module Address 01 will be reported to the Central Station as Point 160, Module Address 02 will be reported to the Central Station as Point 161, with reports continuing in a similar fashion all the way up to Module Address 99 which will be reported as Point 258.

### Supervised Phone Line

The Supervised Phone Line feature allows the user to disable the supervision of Phone Line 2 by the DACT when using an alternate means of secondary transmission path. The factory default setting is Phone Line 2 supervised.

Pressing 2 for **Superv Phone Line** while viewing Onboard DACT Screen 2 will cause the following screen to be displayed:

![Supervised Phone Line Screen](image)

Each press of the 1 key while viewing this screen will toggle the option between Supervise Phone Line 2 Yes and No.
Printer/PC

A Printer or a PC can be connected to the control panel. Pressing 3 while viewing the Option Module Screen will cause the following screen to appear:

```
PRINTER-PC
1=PRINTER NO SU NO
2=PRINTER SU YES
3=PC NO
```

Pressing 1 while viewing the Printer-PC Screen will program the control panel for an unsupervised (NO SU) printer. The display will change to the Printer Baud Rate Screen as shown below.

Pressing 2 while viewing the Printer-PC Screen will program the control panel for a supervised (SU) printer. Printer supervision, when enabled, will typically detect the removal of the printer cable and will detect when the printer power has been turned off. Depending upon the brand of printer, other errors such as paper empty or printer off-line may be detected.

The following screen will appear, which allows the programmer to select the baud rate for the printer communication:

```
PRINTER BAUD RATE
1=2400 BAUD
2=4800 BAUD
3=9600 BAUD
```

Pressing the number key corresponding to the desired baud rate (2 for 4800 Baud for example) will program the control panel for the selected baud rate and return the display to the Option Module Screen which will indicate Printer/PC PR4800 for a supervised printer installed at 4800 baud rate.

Pressing 3 while viewing the Printer-PC Screen will program the control panel for a PC connection. The display will return to the Option Module Screen which will indicate Printer/PC PC for personal computer installed.

NOTE: The LCD-80F and the Printer/PC use the same TB8 terminal block. Only one device can be used at any one time. Setting any option in the Printer/PC screen to Yes will disable communications with the LCD-80F. The printer must be installed in the same room and within 50 feet of the FACP.

3.6.10 Password Change

The factory set passwords, which have been programmed into the control panel, can be changed by selecting the Password Change option. Pressing 1 while viewing Programming Screen #4 will cause the following screen to be displayed:

```
PASSWORD CHANGE
1=MASTER
2=MAINTENANCE
3=REMOTE DOWNLOAD
```

Press 1 to change the Master Programming Level password, 2 to change the Maintenance Level password or 3 to change the Remote Download password. Note that the passwords will not be displayed on LCD annunciators.
The following screen will appear when any change option is selected:

![Enter New Five Digit Password Screen]

A flashing cursor will appear in the center of the display. Enter a new five digit password (such as 10101 for the Master Level). After the fifth digit is entered, the following screen will be displayed:

![Verify New Password Screen]

Re-enter the new password to accept the change. The display will return to the initial Password Change Screen.

### 3.6.11 Clear Program

Pressing 2 while viewing Programming Screen #4, will select the Clear Program option. This will cause the LCD to display the following screen:

![Clear Program Screen #1]

Pressing 1, for Whole System while viewing the Clear Program Screen #1, will clear all general system programming options and all programmed addressable devices from the nonvolatile memory of the FACP. This function is useful when the control panel is first installed, prior to autoprogramming. Note that it is necessary to autoprogram after using the Clear Whole System function.

Pressing 2, for ALL POINTS while viewing the Clear Program Screen #1, will clear all programming related to the SLC loop and connected addressable devices.

Before executing any of the Clear commands listed above, the control panel will provide a warning to the user by prompting with the following display:

![Warning Screen]

Pressing 1 will cause the control panel to carry out the selected clear option. Pressing 2 will prevent programming from being cleared.

### 3.6.12 Program Check

The Program Check feature allows the programmer to view the zones which have been programmed to the Notification Appliance Circuits on the control panel but have not been programmed to Initiating Devices as well as other circuits with no input or output correlations.

Pressing 3 while viewing Programming Screen #4 will cause the following screen to be displayed:

![Program Check Screen]
Pressing 1 while viewing the Program Check screen will display an NAC screen similar to the following.

![NACS NO INPUT](image)

The example above indicates that NAC 1 has been programmed to Zones 25, 31, 44, 55 and 67 but no input devices have been programmed to any of these zones. Use the up and down arrow keys to view all the NAC zones without input assignments for NAC 1, NAC2, NAC 3 and NAC 4.

Pressing 2 while viewing the Program Check screen will display a screen similar to the following:

![ZONES NO INPUT](image)

The Zone No Input screen allows the programmer to view the zones which have not been programmed to at least one input device (not including general alarm Zone 00). The example in the preceding screen indicates that Zones 05, 07, 09, 10 and 11 have been programmed to an addressable module (control module in this example) with an address of 001 on loop 1 but have not been programmed to any input devices. Use the up and down arrow keys to view all the zones without input assignments.

Pressing 3 while viewing Program Check screen will cause a screen similar to the following to be displayed:

![ZONES NO OUTPUT](image)

The Zone No Output feature allows the programmer to view the zones which have not been programmed to at least one output device (not including general alarm Zone 00). The example in the preceding screen indicates that Zones 05, 07, 09, 10 and 11 have been programmed to an addressable detector with an address of 001 on loop 1 but have not been programmed to any output devices. Use the up and down arrow keys to view all the zones without output assignments.

### 3.7 Maintenance Programming Level

To access Maintenance Programming mode, press the `Enter` key. The LCD will display the following:

![PROGRAM STATUS](image)

To enter the Maintenance Programming mode, press 2. The display will read as follows:

![PROGRAM ENTER PASSWORD](image)

When the `Maintenance` level password (default 11111) is entered, the following screen will appear:
Note that in the preceding screens, an arrow appears to inform the programmer that additional options can be viewed by pressing the keypad down arrow key, as shown in the following screen.

### 3.7.1 Disable Point

Pressing 1 for Point Program, while viewing Maintenance Screen #1 will cause the following screens to be displayed:

Select the device type by pressing 1 for an addressable detector or 2 for an addressable module. The operator will be prompted to enter the three digit device address as shown in the following example for a detector:

A flashing cursor will appear in the bottom left corner of the display, prompting for the three digit device address. When the third digit is enter, 001 for example, a screen will appear which will allow enabling or disabling of the selected point, as illustrated in the following example:

Pressing 1 repeatedly will cause the display to toggle between Enabled Yes and Enabled No.

### 3.7.2 History

Pressing 2 while viewing Maintenance Screen #1 will cause the following screen to be displayed:

The History feature allows the operator to view control panel events which have been stored in a history file in memory and erase the contents of the history file.

Pressing 1 while viewing the History screen will cause the following screen to be displayed:

To view all the events which have occurred in the control panel since the history file was last erased, press 1 while viewing the Events screen. To view only alarms which have occurred, press 2 while viewing the Events screen. To view events other than alarms, press 3. The most recent event
will be displayed on the screen. To view all of the selected events, press the up or down arrow keys to scroll through the list of events. If no events have occurred, the display will read **NO EVENTS IN HISTORY**.

Pressing 2 while viewing the History Screen will cause the following screen to be displayed:

```
ERASE HISTORY
PROCEED ?
1=YES 2=NO

Erase History Screen
```

Pressing 1 while viewing the Erase History Screen will cause the message **ERASING HISTORY. PLEASE WAIT** to be displayed. The display will then return to the History Screen. Pressing 2 will cause the display to return to the History Screen without erasing the History file.

### 3.7.3 Program Check

Pressing 3 while viewing Maintenance Screen #1 will cause the following screen to be displayed:

```
PROGRAM CHECK
1=NACS NO INPUT
2=ZONES NO INPUT
3=ZONES NO OUTPUT

Program Check Screen
```

The Program Check feature allows the programmer to view the zones which have been programmed to the Notification Appliance Circuits on the control panel but have not been programmed to Initiating Devices as well as other circuits with no input or output correlations.

Pressing 1 while viewing Program Check screen will cause a screen similar to the following to be displayed.

```
NACS NO INPUT
NAC 1
25 31 44 55 67
```

The example above indicates that NAC 1 has been programmed to Zones 25, 31, 44, 55 and 67 but no input devices have been programmed to any of these zones. Use the up and down arrow keys to view all the NAC zones without input assignments for both NAC 1, NAC 2, NAC 3 and NAC 4.

Pressing 2 while viewing the Program Check screen will display a screen similar to the following:

```
ZONES NO INPUT
05 07 09 10 11 1M001
```

The Zone No Input screen allows the programmer to view the zones which have not been programmed to at least one input device (not including general alarm Zone 00). The example in the preceding screen indicates that Zones 05, 07, 09, 10 and 11 have been programmed to an addressable module (control module in this example) with an address of 001 on loop 1 but have not been programmed to any input devices. Use the up and down arrow keys to view all the zones without input assignments.

Pressing 3 while viewing Program Check screen will cause a screen similar to the following to be displayed:

```
ZONES NO OUTPUT
05 07 09 10 11 1D001
```
The Zone No Output feature allows the programmer to view the zones which have not been programmed to at least one output device (not including general alarm Zone 00). The example in the preceding screen indicates that Zones 05, 07, 09, 10 and 11 have been programmed to an addressable detector with an address of 001 on loop 1 but have not been programmed to any output devices. Use the up and down arrow keys to view all the zones without output assignments.

### 3.7.4 Walktest

To perform a walktest, press 1 while viewing Maintenance Screen #2. The following screen will be displayed:

![Walktest Screen](image)

The operator can press 1 to perform a silent walktest or 2 to perform an audible walktest. Pressing 1 or 2 will cause the control panel to enter Walktest Mode and will display the following screen:

![Unit In Walktest Screen](image)

From this screen, it is possible to view the walktest log, untested system points or a summary of the addressable devices tested during the current walktest. The user can select between any of these screens without interrupting the current walktest session. The walktest session will not end until the Unit In Walktest screen is exited by pressing the Escape key to return to the Walktest Screen.

Pressing 1 for View Walktest Log while viewing the Unit In Walktest screen will cause a screen similar to one of the following two screens to be displayed:

![No Events in Walktest Log](image) OR ![Alarm: Monitor](image)

If there are no events in the current walktest session, the first screen will be displayed, indicating no events have been stored in the walktest log. If any events have been stored, a screen similar to the second will be displayed indicating the latest event. As walktest events occur, the display will change to indicate the latest event. All stored events can be scrolled on the screen by pressing the up or down arrow keys. To return to the first event, press the 1st Event key.

Pressing 2 for View Points while viewing the Unit In Walktest screen will display one of the following screens:

![No Points in System](image) OR ![Untested Points](image)

If the system has no points installed, the first screen will be displayed. If points are installed, the second screen will be displayed, which allows the viewing of all untested system points and their status relating to the current walktest session. The up and down arrow keys will allow viewing of all untested points. If a point is tested while it is being displayed, the screen will update and display the next untested point. The first line indicates the total number of untested points. The second line displays information about an untested point. A description on the bottom of the screen will indicate if the displayed point has been disabled, if the Walktest option has been disabled for that point or if the point is not yet tested. The up and down arrow keys allow the user to scroll through all untested points.
Pressing 3 for View Summary while viewing the Unit In Walktest screen will display a new screen which will show a total of the tested detectors, tested modules, untested detectors and untested modules for the current walktest session.

To end the Walktest session, press the Escape key to return to the Walktest screen. Pressing 3 for View Results while viewing the Walktest screen, after a walktest session has been completed, will allow the operator to view the final results of the most recent walktest.

### 3.7.5 System

To program the time and date into the control panel, press 2 while viewing Maintenance Screen #2. The following display will appear:

![System Screen]

Pressing 1 while viewing the System Screen will cause the following screen to be displayed:

![Time and Date Screen]

To change the time, press 1 to display the following screen:

![Time Screen]

A flashing cursor will appear on the left side of the display. Enter the four digit number corresponding to the time (0000 - 1259). When the fourth digit is entered, the cursor will move one position to the right. Press 1 for AM or 2 for PM to complete entering the time. The display will return to the Time and Date Screen displaying the new time.

To change the date, press 2 while viewing the Time and Date Screen. The following screen will be displayed:

![Date Screen]

A flashing cursor will appear on the left side of the display. Enter the two digit month, two digit day and four digit year. The cursor will move one position to the right after each entry. When the fourth digit of the year has been entered, the display will return to the Time and Date Screen which will show the new date.

### 3.7.6 Zone Setup

Pressing 3 while viewing Maintenance Screen #2 will display the following screen:

![Zone Setup Screen]

PROGRAMMING
1=WALKTEST
2=SYSTEM
3=ZONE SETUP

Maintenance Screen #2
Pressing 1 while viewing Zone Setup screen will display the following screen:

A flashing cursor appears to the right of the Z. To enable a zone, enter the two digit zone number (00 - 99). After the second digit is entered, the zone will be enabled and the cursor will return to the original position. The next zone to be enabled can then be entered. Press Esc (Escape) to return to the previous screen.

Pressing 2 while viewing Zone Setup screen will display the following screen:

A flashing cursor appears to the right of the Z. To disable a zone, enter the two digit zone number (00 - 99). After the second digit is entered, the zone will be disabled and the cursor will return to the original position. The next zone to be disabled can then be entered. Press Esc (Escape) to return to the previous screen.

Pressing 3 while viewing Zone Setup screen will display the following screen:

Zones 97, 98 and 99 can be programmed for normal zone operation or for special purpose applications. In the above illustration, the three zones are shown Off, which means they can be programmed to function in the same manner as all other zones, by assigning them to input and output devices in the Programming Zone Assignment Screen.

Pressing 1 will cause the display to change to PAS 97 On. Each press of the 1 key will cause the display to toggle between PAS 97 On and PAS 97 Off. When Zone 97 is programmed On, a PAS (Positive Alarm Sequence) activation of any smoke detector will cause Zone 97 to activate. By assigning Zone 97 to a control module in the Programming Zone Assignment Screen, an output device connected to the control module can be used to indicate a PAS condition in the control panel. Do not assign Zone 97 to a Notification Appliance Circuit when using this zone to indicate a PAS condition.

Pressing 2 will cause the display to change to Pre-signal 98 On. Each press of the 2 key will cause the display to toggle between Pre-signal 98 On and Pre-signal 98 Off. When Zone 98 is programmed On, a Pre-signal activation of any device will cause Zone 98 to activate. By assigning Zone 98 to a control module in the Programming Zone Assignment Screen, an output device connected to the control module can be used to indicate a Pre-signal condition in the control panel. Do not assign Zone 98 to a Notification Appliance Circuit when using this zone to indicate a Pre-signal condition.

Pressing 3 will cause the display to change to Two Stage 99 On. Each press of the 3 key will cause the display to toggle between Two Stage 99 On and Two Stage 99 Off. Refer to “Two Stage Operation” on page 99 for a description of this feature.
Section 4: Operating Instructions

4.1 Panel Control Buttons

4.1.1 Acknowledge/Step

The first press of the Acknowledge/Step key silences the piezo sounder, changes flashing LEDs to steady and also changes the status field on the LCD display from capital letters to small letters. When the piezo is silenced, an acknowledge message is sent to the printer and the history file. Acknowledge also sends a silence piezo command to the optional annunciators connected to the FACP.

When more than one event exists, the first press of the Acknowledge/Step key functions as described in the preceding paragraph. Subsequent pressing of the key steps through each off-normal active event, with alarm events having a higher priority than trouble and supervisory events.

4.1.2 Alarm Silence

The Alarm Silence key performs the same functions as Acknowledge/Step. In addition, if an alarm exists, it turns off all silenceable NACs (Notification Appliance Circuits) and causes the Alarm Silenced LED to turn on. It also sends an ‘alarm silenced’ message to the printer, history file and optional annunciators. A subsequent new alarm will resound the system NACs. Note that the Alarm Silenced LED is turned off by pressing the Reset key, the Drill key or subsequent activation of the NACs.

4.1.3 Drill/Hold 2 Sec

When the Drill key is held for a minimum of two seconds (time required to prevent accidental activations), the FACP turns on both main panel NAC outputs and all silenceable circuits such as control modules that are programmed as silenceable, and turns off the Alarm Silenced LED if it was previously on. The EVAC IN SYSTEM message is shown on the LCD display. The same message is sent to the printer and history file. The Alarm Silence key can be used to turn off all silenceable NAC outputs following activation by the Drill key.

4.1.4 Reset

Pressing and releasing the Reset key turns off all control modules and NACs, temporarily turns off resettable power to 4-wire detectors, causes a RESET IN SYSTEM message to be displayed on the LCD and sends the same message to the printer and history file. It also performs a lamp test by turning on all LEDs (except the Ground LED), piezo sounder and LCD display segments after the Reset key is released. Any alarm or trouble that exists after a reset will resound the system.

4.2 LED Indicators

The nine LED indicators, which are located on the front panel, operate as follows:

AC Power

This is a green LED which illuminates if AC power is applied to the FACP. A loss of AC power will turn off this LED

Fire Alarm

This red LED flashes when one or more alarms occur. It illuminates steady when the Acknowledge/Step or Alarm Silence key is pressed. The Fire Alarm LED turns off when the Reset key is pressed. The LED will remain off if all alarms have been cleared.
**Supervisory**

This is a yellow LED that flashes when one or more supervisory conditions occur, such as a sprinkler valve tamper condition. It illuminates steady when the \textit{Acknowledge/Step or Alarm Silence} key is pressed. It turns off when the \textit{Reset} key is pressed and remains off if all supervisory alarms have been cleared.

**Trouble**

This is a yellow LED that flashes when one or more trouble conditions occur. It stays on steady when the \textit{Acknowledge/Step or Alarm Silence} key is pressed. The LED turns off when all trouble conditions are cleared. This LED will also illuminate if the microprocessor watchdog circuit is activated.

**Maintenance**

This is a yellow LED that flashes to indicate that a smoke detector requires cleaning or replacement due to an invalid chamber reading or excessive drift.

**Alarm Silenced**

This is a yellow LED that turns on after the \textit{Alarm Silence} key is pressed while an alarm condition exists. It turns off when the \textit{Drill or Reset} key is pressed.

**Disabled**

This is a yellow LED that flashes to indicate that a zone, NAC, detector or module has been temporarily disabled in programming by the user.

**Battery**

This is a yellow LED that flashes to indicate a low battery voltage condition.

**Ground**

This is a yellow LED that flashes to indicate a ground fault condition (zero impedance from the FACP to ground).

**Primary Line Active**

This is a red LED that indicates the primary phone line is active.

**Secondary Line Active**

This is a red LED that indicates the secondary phone line is active.

**Kiss-off**

This is a green LED that blinks when a Central Station has acknowledged receipt of each transmitted message or when a portion of upload or download data has been accepted from a Service Terminal

### 4.3 Normal Operation

With no alarms or troubles in the system, the display message is \textit{System All Normal} along with the current time and date as shown below. To set the time and date, refer to the appropriate section in this manual.

The MS-9200UDLS performs the following functions at regular intervals while in Normal mode:
Monitors AC input voltage and battery voltage
Monitors and reports status of SLC loop, option cards and control panel
Polls all devices on the SLC loop and flashes each device LED while checking for valid replies, alarms, troubles, etc.
Refreshes LCD display and updates time
Scans control panel keypad for key presses
Performs autotest for all SLC devices
Tests memory
Updates and reads all communications buses (EIA-485, EIA-232, etc.)

4.4 Trouble Operation

With no alarms in the system, the detection of a trouble will cause the following:

- The piezo to pulse 1 second On and 1 second Off
- The system Trouble LED to flash one second On and one second Off
- The trouble relay to activate
- TROUBL with device type, noun/adjective, address and trouble description will appear on the LCD display
- The same message, along with the time and date, is sent to the optional printer and the history buffer.
- Communicate the trouble conditions to the Central Station
- Terminate upload or download communications

Note that specific troubles will initiate additional actions; for example, loss of AC power will turn off the AC Power LED, a ground fault will turn on the Ground LED, etc.

Addressable Smoke Detectors, Monitor Modules and Control Modules

For addressable devices connected to the SLC loop, the following is a typical message that could appear on the LCD display for a device trouble:

The information displayed in the above example provides the following information:

- First line in display:
  ✓ The type of event; in this example TROUBL indicating a device trouble
  ✓ Device type identifier; in this example, SMOKE (PHOTO) indicates a Photoelectric smoke detector. Other device type identifiers which can be displayed include SMOKE (ION) for Ionization Detector, HEAT for Heat Detector, CONTROL for Control Module and MONITOR for Monitor Module, PULL STATION for a manual pull box, etc. Refer to “Edit Detector” on page 69, “Edit Module Screen for Monitor Module” on page 77 and “Edit Module Screen for Control Modules” on page 83 for information on additional device types.

- Second line in display:
  ✓ <ADJ>; refers to the user programmed adjective descriptor from library list resident in the control panel or custom entry via PC.
  ✓ <NOUN>; refers to the user programmed noun descriptor from library list resident in the control panel or custom entry via PC.

- Third line in display: INVREP indicates an invalid reply from the addressable device. Other possible troubles include:
  - SHORT - indicating a shorted circuit on an addressable device
– OPEN - indicating an open circuit on an addressable device
– DIRTY1 - maintenance alert indicating that a detector is near but below the allowed alarm limit and is in need of maintenance before the performance is compromised
– DIRTY2 - maintenance alert indicating that a detector needs immediate maintenance since it has been within 80% of its alarm threshold for 24 hours
– INVREP - maintenance alert indicating a hardware or communication problem in the detector
– TEST F - indicating a detector has failed the automatic test operation which functionally checks its sensing chamber and electronics
– INV ID - indicating that an incorrect device code (Type ID) has been programmed for an installed device (for example, Photo has been programmed but an Ion detector has been installed)
– SW TBL - indicating a module has failed the testing of its Class A switching relay
– BLOCK - indicating that a beam detector’s beam is totally blocked
– ALIGN - indicating that a beam detector is in beam alignment mode

• Fourth line in display:
  ✓ Time; the current time in this example is 10:00A which represents 10:00 AM
  ✓ Date; the current month, day and year in this example is 01 for January, 08 for the 8th day of the month and 01 for the year 2001
  ✓ Device Address; 1D001 in this example 1 represents SLC Loop, D represents a detector and 001 represents device address 001

Pressing the Acknowledge/Step or Alarm Silence key will cause the pulsing piezo to silence and the system Trouble LED to change from flashing to on steady. This block acknowledgment occurs regardless of the number of troubles, alarms and supervisory events active in the system. When the Acknowledge/Step key is pressed and at least one new alarm or trouble exists in the system, the ‘acknowledge’ message is sent to the printer and history file. If the trouble clears, either before or after the Acknowledge/Step key is pressed, the ‘clear trouble’ message is sent to the printer and history file.

If all troubles clear and there are no supervisory or fire conditions active in the system, the system returns to normal mode operation and the System All Normal message is shown on the LCD display and sent to the history and printer files. The auto-restore feature will restore cleared troubles even if the troubles were never acknowledged. Note that pressing the Alarm Silence key when only troubles exist in the system will have the same effect as pressing the Acknowledge/Step key except the Alarm Silenced LED will light.

### 4.5 Alarm Operation

Alarm operation is similar to trouble operation with the following differences:

• The piezo sounder produces a steady output as opposed to a pulsed output
• The Fire Alarm LED flashes 1 second On and 1 second Off
• The LCD displays Alarm along with the device name, type, address, adjective/noun, associated zones and time/date
• Communicate the alarm to the Central Station
• Alarms latch and are not allowed to clear automatically
• Alarms activate software zones if so programmed
• Timers for Silence Inhibit, Autosilence and Trouble Reminder are started
• Alarms activate the general alarm relay and general alarm zone Z00
• The trouble relay is not activated
• Store event in history buffer
• Terminate upload or download communications
• Alarms must be Acknowledged before the FACP can be reset

A typical alarm display would be as illustrated below:

Note that the device type, which in this example is PULL STATION, can be any other programmable alarm type.

The information displayed in the above example provides the following information:

• First line in display:
  ✓ The type of event; in this example ALARM indicating an alarm condition
  ✓ Device type identifier; in this example, PULL STATION indicates a manual pull box. Other device type identifiers which can be displayed include SMOKE (ION) for Ionization Detector, HEAT for Heat Detector, CONTROL for Control Module and MONITOR for Monitor Module, PULL STATION for a manual pull box, etc. Refer to “Edit Detector” on page 69, “Edit Module Screen for Monitor Module” on page 77 and “Edit Module Screen for Control Modules” on page 83 for information on additional device types.

• Second line in display:
  ✓ <ADJ>; refers to the user programmed adjective descriptor from library list resident in the control panel or custom entry via PC.
  ✓ <NOUN>; refers to the user programmed noun descriptor from library list resident in the control panel or custom entry via PC.

• Third line in display: Z000 indicates the zone programmed to this device which, in this example, is general alarm Zone 000. Note that a single device can be programmed to five different zones but only the first zone will be displayed.

• Fourth line in display:
  ✓ Time; the current time in this example is 10:00A which represents 10:00 AM
  ✓ Date; the current month, day and year in this example is 01 for January, 08 for the 8th day of the month and 01 for the year 2001
  ✓ Device Address; 1M001 in this example 1 represents SLC Loop, M represents a module and 001 represents device address 001

4.6 Supervisory Operation

Supervisory operation is similar to alarm operation but with the following differences:

• The piezo sounder pulses ½ second On and ½ second Off
• The Supervisory LED flashes ½ second On and ½ second Off
• The LCD displays the status label Active Supervisory along with the device name, type, address, adjective/noun, associated zones, and time/date
• Communicate the supervisory condition to the Central Station
• The supervisory relay is activated
• The alarm relay is not activated
• Silenced alarms are resounded
• Timers are not started
• Store event in history buffer
• Terminate upload or download communications
A typical Supervisory event would be displayed as illustrated in the following:

![Supervisory Event Example]

Note that, like alarms, supervisory signals latch (except when programmed for supervisory autotestable) and can be assigned to software zones. Supervisory alarms do not cause resound as do other alarm conditions. Open circuits in supervisory wiring are processed by the control panel the same way as other trouble conditions. Refer to “Alarm Operation” on page 137, for a description of the information displayed on the control panel LCD.

### 4.7 Process Monitor Operation

Process Monitor operation will initiate the following events:

- The piezo sounder pulses ¼ second On and ¼ second Off
- The LCD displays a process monitor message along with the device name, type, address, adjective/noun, associated zones, and time/date
- Communicate the process monitor condition to the Central Station (if the default event code has been changed from 000 to a reportable event code)
- Relays programmed for process monitoring will be activated
- The alarm relay is not activated
- Fire Alarm NACs will not activate
- SLC NACs (control modules) will activate
- Timers are not started
- Store event in history buffer
- Activate appropriate LED on the ANN-LED annunciator (required for this application)
- Each ANN-LED can support up to 10 zones.

Note that, like supervisory, process monitor signals latch (except when programmed for process monitor autotestable) and can be assigned to software zones.

### 4.8 Hazard/Tornado Condition Operation

Hazard/Tornado Condition operation is intended for Manual activation.

Hazard/Tornado Condition operation will initiate the following events:

- The piezo sounder pulses 1/4 second On, 1/4 second Off
- The LCD displays a hazard message along with the device name, type, address, adjective/noun, associated zones, and time/date
- Communicate the hazard condition to the Central Station (if the default event code has been changed from 000 to a reportable event code)
- Relays programmed for hazard will be activated
- The alarm relay is not activated
- Fire Alarm NACs will not activate
- SLC NACs (control modules) will activate
- Timers are not started
- Store event in history buffer
- Activate appropriate LED on the ANN-LED annunciator (required for this application)
- Each ANN-LED can support up to 10 zones.

Hazard conditions latch. They can be assigned to software zones.
4.9 Medical Alert Condition Operation

Medical alert operation is:

- not intended for nurse call stations (applications) per UL1069.
- not intended for signaling professional medical staff.
- to be used for summoning security guards or other trained personnel within the facility
- intended for Manual activation.

Medical Alert Condition operation will initiate the following events:

- The piezo sounder 1/4 second On, 1/4 second Off
- The LCD displays a medical alert message along with the device name, type, address, adjective/noun, associated zones, and time/date
- Communicate the medical alert condition to the Central Station
- Relays programmed for medical alert will be activated
- The alarm relay is not activated
- Fire Alarm NACs will not activate
- SLC NACs (control modules) will activate
- Timers are not started
- Store event in history buffer
- Activate appropriate LED on the ANN-LED annunciator (required for this application)
- Each ANN-LED can support up to 10 zones.

Medical alert conditions latch. They can be assigned to software zones.

4.10 Mass Notification Operation

The FACP may be installed with an ECC-50/100 audio system to provide mass notification operation. The FACP must control the ECC-50/100 via the ANN-BUS. Refer to “Automatic Audio Panel Control” on page 62 for details and wiring information.

Some mass notification installations may require that the activation of the audio system results in an override of an active fire notification at the FACP. This is determined by a risk assessment in accordance with the local AHJ. The FACP provides the flexibility to accommodate override or non-override operation. For override operation, FACP NACs and/or other SLC control modules may be deactivated while the mass notification event is active. No other FACP operation is overridden or interrupted. If override operation has been selected, notification for a fire event will resume upon termination of the mass notification event at the audio system.

When mass notification override is enabled, mass notification alarms will result in a mass notification event being sent to the central station. An event code can also be sent indicating which message is playing on the audio system. Message event code transmission must be enabled in programming.

Refer to page 102 for programming mass notification override at the system level.
Refer to page 87 for programming mass notification override for SLC control modules.
Refer to page 100 for programming mass notification override for onboard NACs.
Refer to page 123 for programming message event code transmission to the central station.

4.11 NAC Operation

There are four programmable NACs (Notification Appliance Circuits) resident on the MS-9200UDLS main circuit board. All NACs may be programmed as silenceable or nonsilenceable and may also be programmed for steady or coded operation. Coded operation provides a choice between March Time, Temporal or California coding.
4.12 Programmed Zone Operation

Each addressable detector and monitor module can be assigned to a maximum of five software alarm zones. A general alarm zone Z00 may be listed for output (control) points, but it is not necessary to list Z00 for input points, since this is the default zone for all alarm input devices. Zone Z00 is not activated by supervisory points.

When an input device alarms and is not disabled, it activates all software zones assigned to it. An output device that is not disabled is turned on when any of the software zones to which it is programmed become active. Only alarms, hazards/tornado alerts can turn on any of the four main NACs.

4.13 Disable/Enable Operation

Input points which are disabled do not cause an alarm or any zone activation. Disabled output points are held in the off state. All disabled points are treated as if they were in trouble, with the exception being the status label that will be displayed is DISABL.

4.14 Waterflow Circuits Operation

If an alarm exists from a monitor module point that has a waterflow type code and its mapped NAC control module outputs are programmed for nonsilenceable operation, the Alarm Silence key will not function. Also, any output zone activated by a waterflow device will not be silenceable if the Waterflow Silenceable option is set to NO in system programming.

4.15 Detector Functions

Maintenance Alert

Each addressable detector is monitored by the control panel for its maintenance status. If a detector is near but below the allowed alarm limit, a ‘maintenance alert’ message will automatically be displayed, signaling that the detector is in need of servicing.

Automatic Test Operation

An automatic test of an addressable detector is performed each minute, resulting in a complete SLC loop test in approximately 5 hours (if the loop has the maximum number of devices installed). The detector’s sensing chamber and electronics are functionally tested for normal, safe operation. A trouble message is displayed upon failure of this test. A System Reset will clear this trouble.

Type Code Supervision

The FACP monitors addressable hardware device codes at slow intervals. Mismatch of any type code, compared to the system program, will cause a device trouble.

System Alarm Verification

The control panel may be programmed to perform alarm verification to help eliminate the nuisance of false alarms. Alarm verification applies to smoke detectors only.

Smoke Detector Data

Smoke detector data is monitored by the FACP, eliminating the need to test the sensitivity of each detector at its location. A printout of each detector’s data can be retrieved from the FACP using an optional printer or Windows® HyperTerminal. Detector sensing ability can decrease with age and should be monitored as part of a system’s routine maintenance.
4.16 Time Functions: Real-Time Clock

The MS-9200UDLS includes a crystal-based clock that provides time of day, date and day of week. Time is displayed as 12 or 24 hour time with month/day/year and is stored in RAM. Daylight savings time change-over is programmable and automatic. If both AC and battery are lost, the time must be reset.

4.17 Synchronized NAC Operation

Synchronization is a panel feature that controls the activation of notification appliances in such a way that all devices will turn on and off at exactly the same time. This is particularly critical when activating strobes which must be synchronized to avoid random activation and a potential hazard or confusion. The FACP can be programmed to operate with a variety of manufacturer’s devices. NAC synchronization can only be supported properly by the Remote Power Supply Sync Terminal, which follows NAC 1 programming.

**Important**: When a Notification Appliance Circuit with a mix of audible and visual devices is programmed for silenceable and the synchronization feature is selected, only the audible devices will be turned off if the Silence key is pressed. The visual devices (strobes, etc.) will continue to operate.

4.18 Coded Operation

The NAC circuits resident on the control panel main circuit board can be programmed for coded operation. The available pulse rates which can be programmed for coded operation are as follows:

- **Continuous**: Steady output with no pulsing
- **March Time**: Pulses at 120 ppm (pulses per minute)
- **Temporal Code**: Pulses at 1/2 second On, 1/2 second Off, 1/2 second On, 1/2 second Off
- **California Code**: 10 seconds On, 5 seconds Off
- **Two-Stage**: Pulses at 20 ppm (pulses per minute) for 3 or 5 minutes (depending on programming) and then changes to Temporal

4.19 Presignal

Presignal option programs an initiating device to delay the activation of NACs and/or control modules while allowing visual verification by a person. Once a detector or monitor module triggers an alarm, the onboard piezo sounds immediately, but the NACs are not activated for a user programmed time duration of up to three minutes. Note that the alarm relay and communicator will respond to the initial alarm immediately. In addition, Zone 98 will activate. This zone can be programmed to a control module which may be used to activate a sounder or indicator which the installer designates as a Presignal indication. *Do not assign Zone 98 to a Notification Appliance Circuit when using this zone to indicate a Pre-signal condition.*

After the programmed delay, the NACs will activate if the source of the alarm is not cleared. Note that if a second alarm occurs during the programmed time delay, the alarm will be processed immediately, causing activation of the appropriate output zones. The events which occur upon Presignal activation are as follows:

- ✓ onboard piezo sounds immediately
- ✓ control panel LCD display will indicate a presignal event and the active point
- ✓ control points programmed to Zone 98 will activate
- ✓ annunciators (if enabled) will sound the local piezo, and pulse the alarm LED and zone LED
- ✓ outputs (NACs and control modules) of associated zones will be inhibited from activating for a user programmed time delay of up to three minutes
Positive Alarm Sequence

An immediate alarm occurring anytime during the time delay will cause immediate activation of all associated outputs.

Presignal does not affect monitor modules programmed as waterflow, supervisory, process monitoring or remote switches. Presignal operation requires the approval of the local Authority Having Jurisdiction.

4.20 Positive Alarm Sequence

PAS (Positive Alarm Sequence) option will program a smoke detector to delay panel activation (including alarm relay and communicator) for a period of 15 seconds. Zone 97, however, will activate immediately and may be used to connect a signaling device to indicate PAS activation. Do not assign Zone 97 to a Notification Appliance Circuit when using this zone to indicate a PAS condition.

When a detector triggers an alarm, the onboard piezo sounds immediately, but the NACs are prevented from activating for 15 seconds. This inhibit time is factory set and cannot be changed. Pressing the Alarm Silence or Acknowledge/Step key during the 15 second inhibit time will silence the piezo sounder and start a timer which prevents activation of NACs for an additional time duration which can be user programmed for up to three minutes. After the programmed delay, the NACs will activate if the source of the alarm is not cleared. Note that if a second alarm occurs during either time delay, the alarm will be processed immediately, causing activation of the appropriate output zones. The events which occur upon PAS activation are as follows:

- onboard piezo sounds immediately
- control panel LCD display will indicate a presignal event and the active point
- control points programmed to Zone 97 will activate
- ACS annunciators (if enabled) will pulse the Zone 97 PAS LED immediately upon PAS activation. They will sound the local piezo, and pulse the alarm, associated zone and detector address point LEDs after 15 seconds of an unacknowledged PAS activation. Note that if the Alarm Silence or Acknowledge/Step button is pressed, the annunciators will be inhibited from activating for an additional time delay
- outputs (NACs and control modules) of associated zones will be inhibited from activating for a factory set duration of 15 seconds
- pressing the Alarm Silence or Acknowledge/Step key will start a timer which inhibits output activation for additional time delay of up to three minutes which is user programmable
- second alarm occurring anytime during either time delay will cause immediate activation of all associated outputs

PAS operation requires the approval of the local Authority Having Jurisdiction.

Note that the PAS BYPASS monitor type code, when activated, will inhibit the PAS capability until the PAS BYPASS monitor is deactivated. While PAS is inhibited, signaling devices will immediately place the control panel into alarm. This feature may be employed by wiring a normally open device, such as a switch, to a monitor module which has been programmed for PAS BYPASS.

4.21 Special System Timers

4.21.1 Silence Inhibit Timer

This option, if selected, prevents the Alarm Silence key from functioning for 60 seconds following an alarm. A new alarm during the initial 60 second period will not cause the timer to restart with a new 60 seconds. Silence Inhibit operation requires the approval of the local Authority Having Jurisdiction.
4.21.2 Autosilence Timer

If Autosilence is selected, the notification appliances, programmed as silenceable, will automatically be silenced after a programmable duration of from 5 to 30 minutes. Pressing the Drill key will restart the timer. *Autosilence operation requires the approval of the local Authority Having Jurisdiction.*

4.21.3 Trouble Reminder

If selected, this feature causes a reminding ‘beep’ every 15 seconds during an alarm (after the Alarm Silence key is pressed) and every two minutes during a trouble condition (after the Acknowledge/Step or Alarm Silence key is pressed). The ‘beeps’ from the onboard piezo sounder will occur until the alarm or fault is cleared.

Note that if the trouble is not cleared within 24 hours, the piezo will resound, indicating that the trouble condition still exists.

4.21.4 Waterflow Retard Timer

If selected, this option will delay the activation of a waterflow type alarm for a programmable time duration from 1 to 90 seconds. This delay is in addition to any time delay inherent in the waterflow device. *This feature requires the approval of the local Authority Having Jurisdiction.*

4.21.5 Alarm Verification (None or One Minute)

If alarm verification is selected, an addressable smoke detector's alarm is ignored for a retard time of 13 seconds and the detector's alarm condition is automatically reset. There will be no alarm indication at the FACP during the Retard period. A confirmation period of 60 seconds follows, during which a subsequent alarm from the same detector will cause the panel to immediately activate the appropriate outputs and indicate the alarm condition at the FACP. If a different detector alarms any time during the first detector's verification period, the panel will immediately activate all appropriate outputs and indicate the alarm condition at the FACP. If no additional detector alarms occur within 73 seconds of the first alarm (13 second retard plus 60 second confirmation), the timer resets and the panel is ready to verify any new detector alarms which may occur. The following is a graphic representation of Alarm Verification.

![Diagram of Alarm Verification](image)

**NOTE:** Alarm Verification is available only for addressable smoke detectors, not conventional smoke detectors.
4.22 Walktest

Walktest is a feature which allows one person to test the fire alarm system. An audible walktest will momentarily sound the Notification Appliance Circuits in the building and store the walktest information in a file at the panel. A silent walktest will not sound the NACs but will store the walktest information in a file which can be viewed at the panel. Disabled NAC devices will not activate during walktest.

**Alarm/Shorted Condition**

When in audible Walktest, the panel responds to each new alarm and activates its programmed control outputs for four seconds, if those outputs have been programmed for silenceable activation. It also stores each alarm in the walktest history file which can be sent to an optional printer. The stored display will be the same as if the device actually activated except the colon (:) in the time stamp is replaced with an asterisk (*).

Note that if the system under test includes one or more enabled MMF-302 monitor modules, the following may apply:

If the MMF-302 monitor module is used for a supervised, 2-wire smoke zone, alarming any monitor module in the system will result in the activation of programmed control outputs for an additional eight seconds or less. This is caused by the temporary removal of 24 VDC resettable power from the MMF-302. The MMF-302 reports this loss of power as an open condition in addition to the alarm condition.

**Open Condition**

Addressable devices are monitored for fault conditions during Walktest mode. When a new trouble condition occurs, the FACP will activate all NACs and control modules programmed for Walktest and mapped to the faulty device, then shut them off after eight seconds.

While in Walktest, the trouble relay is activated and the system Trouble LED flashes (as in all of the Program and status change operations). The alarm relay is not activated.

4.23 Read Status

Read Status functions do not require a password. The control panel will continue to provide fire protection while in Read Status mode. This mode can be entered while the control panel is in alarm or trouble. If a new alarm or trouble occurs during these functions, the Read Status is exited to prevent confusion.

**Read Status Entry**

When the operator presses the control panel enter key, the LCD will display the following:

1=READ STATUS MODE
2=PROGRAMMING MODE
3=REMOTE DOWNLOAD
4=MANUAL DIAL MODE

Pressing 1, while this screen is being displayed, will cause the control panel to enter the Read Status mode which allows the user to view and print the programmed features and status of the control panel.
The following screens will be displayed:

<table>
<thead>
<tr>
<th>Screen</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1=SYSTEM POINT&lt;br&gt;2=ZONES&lt;br&gt;3=POWER</td>
</tr>
<tr>
<td>#2</td>
<td>1=TRouble REMinder&lt;br&gt;2=TIMERS&lt;br&gt;3=NACS</td>
</tr>
<tr>
<td>#3</td>
<td>1=RElAYS&lt;br&gt;2=PRogram CHECK&lt;br&gt;3=HISTORY</td>
</tr>
<tr>
<td>#4</td>
<td>1=ANNUNCIATORS&lt;br&gt;2=PHONE LINE&lt;br&gt;3=CENTRAL STATION</td>
</tr>
<tr>
<td>#5</td>
<td>1=SERVICE TERMINAL&lt;br&gt;2=PRINTER/PC&lt;br&gt;3=PRINT</td>
</tr>
<tr>
<td>#6</td>
<td>1=TIME-DATE</td>
</tr>
</tbody>
</table>

### 4.23.1 System Point

Pressing 1 while viewing Read Status Screen #1 will cause the following screen to be displayed:

```
READ SYSTEM POINT
SELECT TYPE
1=DETECTOR
2=MODULE
```

The operator selects the type of device which is to be viewed by pressing 1 for Detector or 2 for Module. If 1 is pressed, the display will change to the following screen:

```
READ SYSTEM POINT
ENTER DETECTOR#

```

Entering the three digit detector address will cause the control panel to display the current status of the selected device. For example, if a detector with address 001 on the SLC loop is entered, a display similar to the following will appear:

```
NORMAL SMOKE(PHOTO)
NORTH CLASSROOM
Z005
V 1D001
```

The information in the preceding display includes:

- **NORMAL** - the present status (could also be ALARM, TROUBL, DISABL, etc.)
- **SMOKE (PHOTO)** - the device type which is a photoelectric smoke detector (could also be ION for ionization smoke detector)
- **NORTH CLASSROOM** - the Adjective/Noun label for this device
- **Z005** - the first of five possible assigned software zones
- **1D001 - I = SLC Loop, D = Detector, 001 = Address 001**
- V - Alarm Verification Enabled (V = Yes, * = No)
- S - Silenceable for control modules (S = Yes, * = No)
- W - Walktestable for control and monitor modules (W = Yes, * = No)

Pressing the down arrow key, while viewing the screen shown above, will allow the operator to view additional programming information about the selected device, such as:

- Enable/Disable Status
- Device Type
- Alarm Verification On/Off (for detectors)
- Walktest Yes/No
- PAS (Positive Alarm Sequence) Yes/No (for detectors only)
Read Status Operating Instructions

- Pre-Signal Yes/No (for detectors and monitor modules)
- Zone Assignments (five maximum)
- Chamber Value
- Adjective/Noun descriptor
- Silenceable Yes/No (for control modules)
- MNS Override Enabled/Disabled (for control modules)

### 4.23.2 Zones

Pressing 2 while viewing Read Status Screen #1 will cause the following screens to be displayed:

From the preceding screens, the control panel operator can view:

- **Zones Installed** - all software zones programmed into the system (99 maximum)
- **Zones Enabled** - all software zones that are enabled
- **Zones Disabled** - all software zones that have been disabled
- **Special Purpose** - on or off programming for Special Purpose Zones 97 reserved for PAS, 98 reserved for Pre-signal and 99 reserved for Two Stage
- **Zone Type** - the Type assigned to each installed zone (default is Alarm)
- **Zone Message** - the Message assigned to each installed zone

### 4.23.3 Power

Pressing 3 while viewing Read Status Screen #1 will cause the following screens to be displayed:

The following table lists the circuit being measured, possible conditions and their respective voltage ranges:

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Condition</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>Normal Battery (nominal)</td>
<td>27.05 to 28.15 VDC</td>
</tr>
<tr>
<td></td>
<td>Low Battery</td>
<td>20.0 to 20.8 VDC</td>
</tr>
<tr>
<td></td>
<td>No Battery</td>
<td>0 to 18.36 VDC</td>
</tr>
<tr>
<td>24V Resetttable</td>
<td>Normal</td>
<td>21.25 to 27.50 VDC</td>
</tr>
<tr>
<td>24V Nonresettable</td>
<td>Normal</td>
<td>21.25 to 27.50 VDC</td>
</tr>
<tr>
<td>Charger</td>
<td>Normal</td>
<td>21.87 to 29.84 VDC</td>
</tr>
<tr>
<td>NAC 1 - NAC 4</td>
<td>Normal</td>
<td>-1.3 to -1.8 VDC</td>
</tr>
<tr>
<td></td>
<td>Open Circuit</td>
<td>-2.3 to -2.5 VDC</td>
</tr>
<tr>
<td></td>
<td>Short Circuit</td>
<td>0 to 1.0 VDC</td>
</tr>
</tbody>
</table>
4.23.4 Trouble Reminder

Pressing 1 while viewing Read Status Screen #2 will display the following screen:

```
TROUBLE REMINDER
TROUBLE REM ON
```

The screen indicates whether the Trouble Reminder feature is On or Off.

4.23.5 Timers

Pressing 2 while viewing Read Status Screen #2 will cause the following Timer screens to be displayed:

```
TIMERS
PAS DELAY 000
PRE SIGNAL 000
WATERFLOW 000
```

```
TIMERS
AC LOSS DELAY 4
```

These screens will indicate the delay time, in seconds, for each of the first three possible delay options. The AC Loss Delay time is displayed in hours.

4.23.6 NAC

Each NAC can be programmed individually with unique settings with the exception of Canadian Mode. When the Canadian Option is selected in programming (see “Canadian Option” on page 101), all NAC settings are changed to that of NAC 1. While in Canadian Mode, if any NAC is setting is changed, all other NACs will get those same settings. Pressing 3 while viewing Read Status Screen #2 will display the following screen:

```
NAC
1=NAC 1 3=NAC 3
2=NAC 2 4=NAC 4
```

The operator can press 1 to view the programmed options for NAC 1, 2 to view the programmed options for NAC 2, 3 to view the programmed options for NAC 3, or 4 to view the programmed options for NAC 4. The resulting screens will display the following information:

- Enable/Disable Status
- Circuit Type (Bell, Strobe, etc.)
- Silenceable/Nonsilenceable
- Auto Silence Enable/Disable and time delay (in minutes)
- Coding Selection (Temporal, Steady, etc.)
- Zone Assignments
- Silence Inhibit Enabled/Disabled
- Synchronization Type (System Sensor, Wheelock, or Gentex)
- MNS Override Enabled/Disabled

4.23.7 Relays

Pressing 1 while viewing Read Status Screen #3 will display the following screen:

```
RELAY
1=RELAY 1
2=RELAY 2
3=RELAY 3
```
The operator can view the programmed option for each relay by pressing the corresponding number key.

### 4.23.8 Program Check

Pressing 2 while viewing Read Status Screen #3 will cause a screen similar to the following to be displayed:

```
PROGRAM CHECK
1=NACS NO INPUT
2=ZONES NO INPUT
3=ZONES NO OUTPUT
```

Pressing 1 while viewing the Program Check screen will display a screen which will indicate if any input zones have not been programmed to one of the Notification Appliance Circuits. Use the up and down arrow keys to view all NACs.

Pressing 2 while viewing the Program Check screen will display a screen which will indicate if any output zones have not been programmed to at least one input zone. Use the up and down arrow keys to view all zones.

Pressing 3 while viewing the Program Check screen will display a screen which will indicate if any input zones have not been programmed to at least one output zone. Use the up and down arrow keys to view all zones.

### 4.23.9 History

Pressing 3 while viewing Read Status Screen #3 will display the following screen:

```
HISTORY
1=VIEW ALL
2=VIEW ALARMS
3=VIEW OTHER EVENTS
```

The operator can view all events which have been stored in the history file, only alarms or other events, such as troubles or supervisories, by pressing the corresponding number key.

### 4.23.10 Annunciators

Pressing 1 while viewing Read Status Screen #4 will display the following screens:

```
ANNUNCIATORS
TERM ENABLED YES
2=ACS OPTIONS
3=ANN-BUS OPTIONS
```

The Annunciator Screen indicates if Terminal mode options are enabled or disabled.

Pressing 2 for ACS Options while viewing the Annunciator Screen allows the operator to view the ACS Options screen:

```
ACS OPTIONS
ACS ENABLED NO
2=ACS ADDRESSES
UDACT ENABLED NO
```

The ACS Options screen indicates if the ACS option has been enabled YES or disabled NO.

Pressing 2 for ACS Addresses while viewing the ACS Options screen will display screens with ACS addresses 1-31 and whether a device is installed at that address YES or not installed NO.

The ACS Options screen indicates if a UDACT is installed YES or if a UDACT is not installed NO.
Pressing 3 for **ANN-BUS Options** while viewing the Annunciator Screen will display the following screens:

The ANN-BUS Screen #1 indicates if the ANN-BUS has been enabled *YES* or disabled *NO*.

Pressing 2 for *Modules Installed* while viewing ANN-BUS Screen #1 will display screens for ANN-BUS Addresses 1 - 8 and the devices installed at each address. Subscreens will display the options that have been programmed for each device.

Pressing 3 for *ANN-S/PG Options* while viewing ANN-BUS Screen #1 will display the options selected for the installed serial or parallel printer.

Pressing 1 for *ANN-80 Options* while viewing ANN-BUS Screen #2 will display the options selected for the installed ANN-80 annunciators.

### 4.23.11 Phone Line

Pressing 2 while viewing Read Status Screen #4 will display the following screen:

The second and third lines of this screen indicate that both the Primary and Secondary phone lines have been configured for touchtone dialing operation.

Pressing 3 while viewing the Phone Line screen will cause the following screen to be displayed:

This screen indicates whether or not Phone Line 2 is being supervised. In this example, Phone Line 2 No indicates the phone line is not being supervised.

### 4.23.12 Central Station

Pressing 3 while viewing Read Status Screen #4 will display the following screens:

Central Station Screen #1 indicates whether the Central Station Reporting is enabled or disabled, if the Reports will be sent to one or both the Primary and Secondary Central Station phone numbers and the Call Limit for DACT trouble calls within a 24 hour period.

Central Station Screen #2 provides information on the Primary and Secondary Central Station programming which includes:

- Test Time Interval
- Account Code
- 24 Hour Test Time
- Phone Number
Read Status

- Communication Format
- Event Codes

### 4.23.13 Service Terminal

Pressing 1 while viewing Read Status Screen #5 will display the following screens:

The Ring Count is displayed in the Service Terminal Screen.

### 4.23.14 Printer/PC

Pressing 2 while viewing Read Status Screen #5 will display the following screen:

The display will inform the operator as to whether the control panel is configured for a printer or a PC. In the example above, PR4800 indicates that the panel is configured for a printer with a baud rate of 4,800.

### 4.23.15 Print

To print program data or control panel status, press 3 while viewing Read Status Screen #5. The following screens will be displayed:

Pressing 1 while viewing Print Screen #1 allows the user to print the History file which will detail all of the system activities since the file was last cleared from memory.

Pressing 2 while viewing Print Screen #1 allows the user to print the Walktest log which will detail all of the system activations during walktest since the log was last cleared. Refer to “Walktest” on page 104 for additional information on the display.

Pressing 3 while viewing Print Screen #1 allows the user to print the detector data for each addressable smoke detector connected to the system. A printout, similar to the following example, will be generated if an optional printer is connected to the FACP.
Chamber Value

The Chamber value should be within the recommended range for the following smoke detectors:

- SD355, SD350(T), D350P(R), and SD300(T) Addressable Photoelectric Smoke Detectors: 405 - 2100 (obscuration of 1.00%/ft to 3.66%/ft.)
- CP355, CP350, and CP300 Addressable Ionization Smoke Detectors: 750 - 2100 (obscuration of 0.50%/ft. to 1.44%/ft.)

The smoke detector will still function properly beyond the high limit in the above recommended range, up to a point where the FACP issues a maintenance warning. However, it is recommended that the smoke detectors be maintained within the recommended range to avoid maintenance warnings or false alarms.

If the smoke detector’s chamber reading is not within the recommended range, clean the detector and check the chamber reading again. If the reading is still not within the recommended range, the detector is suspect (not cleanable) and should be replaced.

Maintenance Alert

The software determines when the drift compensation for a detector reaches an unacceptable level that can compromise detector performance. When a detector reaches an unacceptable level, the control panel indicates a maintenance alert. Table 4.1 summarizes the three levels of maintenance alert:

<table>
<thead>
<tr>
<th>Maintenance Level</th>
<th>FACP Status Displays</th>
<th>Indicates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Chamber Value</td>
<td>INVREP</td>
<td>A hardware problem in the detector</td>
</tr>
<tr>
<td>Maintenance Alert</td>
<td>DIRTY1</td>
<td>Dust accumulation that is near but below the allowed limit. <strong>DIRTY1</strong> indicates the need for maintenance before the performance of the detector is compromised</td>
</tr>
<tr>
<td>Maintenance Urgent</td>
<td>DIRTY2</td>
<td>Dust accumulation above the allowed limit.</td>
</tr>
</tbody>
</table>

Table 4.1 Maintenance Alert Levels

Figure 4.1 illustrates a graphic representation of the maintenance levels:
Drift Compensation

Drift compensation uses software algorithms that identify and compensate for long-term changes in the data readings from each addressable smoke detector. These long-term changes in detector data readings are typically caused by dirt and dust accumulation inside the smoke chamber. Drift compensation performs the following functions:

- Samples photoelectric smoke detectors every 6 seconds and ionization smoke detectors every 3 seconds
- Allows a smoke detector to retain its original ability to detect actual smoke and resist false alarms, even as dirt and dust accumulate
- Reduces maintenance requirements by allowing the control panel to automatically perform the periodic sensitivity measurements required by NFPA Standard 72

The FACP software also provides filters to remove transient noise signals, usually caused by electrical interference.

4.23.16 Time-Date

The operator can view the daylight savings time and the month and week when daylight savings time will begin and end. Pressing 1 while viewing Read Status Screen #6 will display the following screens:

```
DAYLIGHT SAVINGS
ENABLED YES
START MONTH MAR
START WEEK WEEK-2
```

```
DAYLIGHT SAVINGS
END MONTH NOV
END WEEK WEEK-1
```
Section 5: Central Station Communications

The control panel transmits zone and system status reports to Central Stations via the public switched telephone network. Two supervised telephone line connections are made to interface the control panel to the telephone lines. Two optional 7 foot telephone cords are available for this purpose and can be purchased separately.

The control panel supervises both telephone lines for proper voltage. A delay of two minutes will occur before a fault in either phone line connection is reported as a trouble. When a fault is detected, an audible trouble signal will sound, the yellow trouble LED will blink, the LCD display will indicate the phone line trouble and the trouble condition will be reported to the Central Station over the remaining operational phone line.

The control panel comes with line seizure capability provided for both the primary and secondary telephone line interfaces. Any time that the control panel needs to make a call to a Central Station, line seizure will disconnect any local premises phones sharing the same telephone line.

All transmissions to the Central Stations will be sent over the primary phone line. In the event of noisy phone lines, transmissions will be sent over the backup secondary phone line.

Two phone numbers must be programmed, the primary Central Station phone number and the secondary Central Station phone number. All system reports will be transmitted to the primary Central Station phone number. Reports will automatically be sent to the secondary Central Station phone number if attempts to transmit to the primary Central Station phone number are unsuccessful. If 10 total attempts to communicate are unsuccessful, a Communicator Failure report will be displayed.

The MS-9200UDLS meets NFPA 72 National Fire Code reporting requirements for: (a) the type of signal, (b) condition and (c) location of the reporting premises. The general priority reporting structure is:

1. Zone Alarms and Restores
2. Zone Troubles and Restores
3. System Troubles and Restores
4. 24-hour Test


## 5.1 Transmittal Priorities

The integral communicator transmits highest priority events first. Events, in terms of priority, are listed below in descending order:

1. **Alarms (highest priority level)**
   - Pull stations
   - Waterflow
   - Smoke detector
   - Other alarm types

2. **Supervisory Zone**

3. **System Troubles**
   - Zone disabled
   - Fire drill
   - AC fail (after delay)
   - Zonal faults
   - Earth fault
   - Low battery
   - Telephone line fault
   - Notification Appliance Circuits fault
   - Communication trouble
   - Annunciator trouble
   - System off normal

4. **Restoral Reports**
   - Zone alarm
   - Supervisory
   - Zone(s) enabled
   - Fire drill
   - AC
   - Zone fault
   - Earth
   - Battery
   - Telephone line
   - Notification Appliance Circuits
   - Communication
   - Annunciator trouble
   - System off normal

5. **24 Hour Test (lowest priority)**

Red LEDs are provided on the circuit board to identify which telephone line is activated. Also, a green LED labeled *Kissoff* will turn on whenever the control panel has successfully transmitted reports to the Central Station. The *Kissoff* LED may turn on several times during communications with a Central Station.
The table below shows UL listed receivers which are compatible with the MS-9200UDLS.

### Format
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SIA-DCS-8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>SIA-DCS-20</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Ademco Contact ID</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

#### Table 5.1 Compatible UL Listed Receivers

1. With 685-8 Line Card with Rev. 4.4d software
3. With version V2.4 Receiver and 126047 Line Card Rev. G
4. With 124077V2.00 Receiver and 126047 Line Card Rev. M
5. With V.7301 Receiver S/W
6. With 01.01.03 Receiver S/W and Line Card 01.01.03
7. With software V1.86
8. With software V1.72
9. With DSP4016 and V1.6 Line Card
10. With software V3.9

**IMPORTANT!** It is the installer’s responsibility to ensure that the Digital Alarm Communicator/Transmitter is compatible with the Central Station Receiver, utilized by the monitoring service, prior to installation. The Compatibility Table provides a list of compatible receivers and associated software versions for the receivers. Changes in the hardware and/or software by the receiver manufacturers may affect the receiver compatibility with the FACP DACT. After completing the installation, communication between the DACT and Central Station Receiver must be tested and verified.
Section 6: Remote Site Upload/Download

**Important!** The FACP will automatically reset 2 minutes after completion of a user program download via the PS-Tools programming utility. To prevent program corruption, the operator must wait until this panel reset occurs before performing any panel operations.

The control panel may be programmed or interrogated off-site via the public switched telephone network or locally using a USB cable. Any personal computer with Windows™ XP or NEWER, with a 2400 baud compatible modem and Upload/Download software PS-Tools, may serve as a Service Terminal. This allows download of the entire program or upload of the entire program, history file, walktest data, current status, system voltages, time and date.

The control panel may also communicate to a local PC at the job-site. The PC must be connected to the USB connector J12 on the FACP main circuit board. A standard USB cable with male-A to male-B connectors, which must be purchased separately, is required.

**Important:** Remote modification of FACP programming requires that the panel be enabled for remote download (refer to “Remote Site Upload/Download” on page 157). Remote interrogation of panel programming, history logs, detector status, etc., is possible without enabling the remote download option.

**CAUTION:** After successfully downloading a program, make certain to perform the following steps:

1. Print out all programmed data via Print Mode or manually view programmed entries and compare to intended program data
2. Test all affected panel operations
3. Immediately correct any problems found

### 6.1 Remote Download

NFPA 72 requirements state that a technician be on-site and at the control panel whenever the PS-Tools Programming Utility is used to download any information to the FACP. This applies to local and remote programming. For this reason, a new option has been added to the FACP which allows an individual at the FACP to enter a password and either enable the proprietary mode where downloading will be allowed at any time or access a specific password protected screen where downloading will be allowed regardless of the current proprietary setting. The Remote Download option can be selected from the main menu screen as shown below:

```
1=READ STATUS MODE
2=PROGRAMMING MODE
3=REMOTE DOWNLOAD
4=MANUAL DIAL MODE
```

Pressing 3 for Remote Download while viewing the main menu will cause the following screen to be displayed:

```
REMOTE DOWNLOAD
ENTER PASSWORD

```

The Remote Download password (default 00000) must be entered to access the Remote Download feature. Note that the default password can be changed using the Password Change option (refer to “Password Change” on page 126). Entering the correct password will cause the following screen to be displayed:

```
REMOTE DOWNLOAD
1=PROPRIETARY
2=ACCEPT DOWNLOAD
```
Pressing 1 for Proprietary No (factory default setting), while viewing the Remote Download screen, will cause the display to toggle from Proprietary No to Proprietary Yes. Each press of the 1 key will cause the display to toggle between Proprietary No and Proprietary Yes. Selecting Proprietary Yes will program the FACP to allow remote programming downloads from the PS-Tools programming utility at all times without the need to access the Remote Download screen.

Pressing 2 for Accept Download will cause the following screen to be displayed:

While this screen is displayed, remote programming downloads are allowed regardless of the Proprietary setting. Exiting this screen will disable any further downloads to the FACP. Also, following 30 minutes of inactivity (including up/downloading), the Accept Download screen will time-out, causing the display to return to the System All Normal screen.

6.2 Transferring a Program

The first time that the control panel is downloaded (whether initiated at the jobsite or remotely), a secret code is loaded in by a Service Terminal. Future upload or download requests cause verification of the secret code by the control panel before processing of data is allowed. If the secret code is not verified, the control panel will terminate the request.

While the control panel is communicating with the Service Terminal, one of the DACT’s red phone line active LEDs and the green Kissoff LED will turn on steady.

In order to download the panel (whether initiated at the jobsite or remotely), the following must be true:

✓ The control panel must be in the Normal Mode of operation. Downloading is not possible if the panel is in any other mode
✓ There cannot be any active communications ongoing with a Central Station receiver
✓ All active events must be successfully ‘kissed-off’ by the Central Station(s). The communicator must be in a standby state with no new information waiting to be transmitted to a Central Station

6.2.1 Security Features

Upload and download with the control panel have been carefully designed to include key security features to ensure proper functionality. Any time a transfer is initiated, the control panel and the Service Terminal will communicate and transfer data before contacting a Central Station. When the data transfers are completed and the control panel disconnects from the Service Terminal, the control panel will call the Central Station and report one of the following conditions:

• Upload/Download request received
• Upload and/or Download request successful
• Upload/Download failed

The key features are listed and explained in the following sections.

Secret Code Verification

A secret code is stored in the control panel by a Service Terminal to prevent unauthorized access. The secret code is created at the Service Terminal by the master user and cannot be viewed or changed by anyone other than a master user. Viewing of the secret code is prohibited at the control panel. Prior to allowing an upload or download of data, the control panel will verify the secret code transmitted by the Service Terminal.
Transferring a Program

Remote Site Upload/Download

Time-out at Control Panel

Upon answering an incoming call on the primary Central Station phone line, the control panel will listen for a modem connection signal. If this signal is not received within 50 seconds, the control panel will disconnect the call. Upon successful connection (secret code verified), if no communication occurs within 30 minutes, the panel will disconnect the call. Upon time-out, transfer activity will be reported to the Central Station (if enabled) and the connection will be terminated.

Error Checking

As each block of data is received by the control panel, it is checked for accuracy. If an error is detected, the block is retransmitted until correct, up to a maximum of four times. If the Secret Code is not verified and four errors occur, the call is disconnected and the report that the upload/download was not successful is called to the Central Station(s).

Central Station Data Protection

The primary and secondary Central Station phone numbers, communications format, account code, test time and programmable event codes are vital Central Station information. These blocks of data are protected from partial programming due to faulty phone connections, line noise and other errors. This prevents the panel from being confused due to a wrong phone number, account code, test time and most critical formatting errors.
Section 7: Power Supply Calculations

7.1 Overview

This section contains instructions and tables for calculating power supply currents in alarm and standby conditions. This is a four-step process, consisting of the following:

1. Calculating the total amount of AC branch circuit current required to operate the system
2. Calculating the worst-case system current load on the control panel, when primary (AC) power is applied, to assure that the limit of its internal power supply will not be exceeded. This considers the fire alarm condition only.
3. Calculating the total current load on the batteries (secondary power source) in the event of an AC power loss. This considers both standby and fire alarm conditions.
4. Calculating the size of the batteries required to support the system if AC power loss occurs, based on the total battery current load, plus a regulatory agency mandated derating factor.

7.2 Calculating the AC Branch Circuit

The control panel requires connection to a separate, dedicated AC branch circuit, which must be labeled FIRE ALARM. This branch circuit must connect to the line side of the main power feed of the protected premises. No other non-fire alarm equipment may be powered from the fire alarm branch circuit. The branch circuit wire must run continuously, without any disconnect devices, from the power source to the control panel. Overcurrent protection for this circuit must comply with Article 760 of the National Electrical Codes as well as local codes. Use 14 AWG (2.00 mm²) wire with 600 volt insulation for this branch circuit.

Use Table 7.1, to determine the total amount of current, in AC amperes (A), that must be supplied to the system.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Number of Devices</th>
<th>Current Draw (AC amps)</th>
<th>Total Current per Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-9200UDLS or MS-9200UDLSE</td>
<td>1</td>
<td>3.00 or 1.50</td>
<td>=</td>
</tr>
<tr>
<td>CHG-75</td>
<td>[ ]</td>
<td>2.05</td>
<td>=</td>
</tr>
<tr>
<td>CHG-120F</td>
<td>[ ]</td>
<td>2.00</td>
<td>=</td>
</tr>
<tr>
<td>Sum Column for AC Branch Current Required</td>
<td>[ ]</td>
<td>[ ]</td>
<td>=</td>
</tr>
</tbody>
</table>

Table 7.1 AC Branch Circuit Requirements

7.3 Calculating the System Current Load

7.3.1 Overview

The control panel’s internal power supply must support all connected devices while primary (AC) power is applied. The continuous system current load is highest during a fire alarm condition. To calculate the fire alarm load on the internal power supply, use Calculation Column 1 in Table 7.3 on page 162.

The secondary power source (batteries) must be able to power the system under both standby and fire alarm conditions upon loss of primary (AC) power. To calculate the fire alarm load on the secondary power source, use Calculation Column 2 in Table 7.3 on page 162. To calculate the standby load on the secondary power source, use Calculation Column 3 in Table 7.3 on page 162.
Calculating the System Current Load

Power Supply Calculations

All currents are given in amperes (A). Table 7.2 shows how to convert milliamperes and microamperes to full amperes.

<table>
<thead>
<tr>
<th>To convert...</th>
<th>Multiply</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milliamperes (mA) to</td>
<td>mA x 0.001</td>
<td>3 mA x 0.001 = 0.003A</td>
</tr>
<tr>
<td>amperes (A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microamperes (µA) to</td>
<td>µA x 0.000001</td>
<td>300 µA x 0.000001 = 0.0003 A</td>
</tr>
<tr>
<td>amperes (A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.2 Converting to Full Amperes

7.3.2 How to Calculate System Current Load

Use Table 7.3 on page 162 to calculate current load as follows:

1. Enter the quantity of devices in all three columns.
2. Enter the current draw where required. Refer to the Device Compatibility Document for compatible devices and their current draw.
3. Calculate the current draws for each in all columns.
4. Sum the currents for each column. This is the total load.
5. Verify that the total from Column 1 is less than or equal to the value specified in the note.
6. Copy the totals from Column 2 and Column 3 to Table 7.4 on page 163.
Table 7.3 contains columns for calculating current load. For each column, calculate the current and enter the total (in amperes) in the bottom row. When finished, copy the totals from Calculation Column 2 and Calculation Column 3 to Table 7.4 on page 163. For maximum output current available per circuit and per panel, refer to Section 1.2, “Specifications”, on page 15.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Calculation Column 1</th>
<th>Calculation Column 2</th>
<th>Calculation Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary (AC) Power Source</td>
<td>Secondary (Battery) Power Source</td>
<td>Secondary (Battery) Power Source</td>
</tr>
<tr>
<td></td>
<td>Fire Alarm Current (amps)</td>
<td>Fire Alarm Current (amps)</td>
<td>Standby Current</td>
</tr>
<tr>
<td>Main Circuit Board</td>
<td>Qty X[current draw]= Total</td>
<td>Qty X[current draw]= Total</td>
<td>Qty X[current draw]= Total</td>
</tr>
<tr>
<td>ANN-800C</td>
<td>X[0.040]= 0.040</td>
<td>X[0.040]= 0.040</td>
<td>X[0.040]= 0.040</td>
</tr>
<tr>
<td>ANN-(R)LED</td>
<td>X[0.068]= 0.068</td>
<td>X[0.068]= 0.068</td>
<td>X[0.068]= 0.068</td>
</tr>
<tr>
<td>ANN-I/O</td>
<td>X[0.075]= 0.075</td>
<td>X[0.075]= 0.075</td>
<td>X[0.075]= 0.075</td>
</tr>
<tr>
<td>ANN-S/PG</td>
<td>X[0.200]= 0.200</td>
<td>X[0.200]= 0.200</td>
<td>X[0.200]= 0.200</td>
</tr>
<tr>
<td>ANN-CL</td>
<td>X[0.045]= 0.045</td>
<td>X[0.045]= 0.045</td>
<td>X[0.045]= 0.045</td>
</tr>
<tr>
<td>ANN-80RF</td>
<td>X[0.158]= 0.158</td>
<td>X[0.158]= 0.158</td>
<td>X[0.158]= 0.158</td>
</tr>
<tr>
<td>ACM-16AF</td>
<td>X[0.056]= 0.056</td>
<td>X[0.056]= 0.056</td>
<td>X[0.056]= 0.056</td>
</tr>
<tr>
<td>ACM-32AF</td>
<td>X[0.018]= 0.018</td>
<td>X[0.018]= 0.018</td>
<td>X[0.018]= 0.018</td>
</tr>
<tr>
<td>AFM-16AF</td>
<td>X[0.056]= 0.056</td>
<td>X[0.056]= 0.056</td>
<td>X[0.056]= 0.056</td>
</tr>
<tr>
<td>AFM-32AF</td>
<td>X[0.065]= 0.065</td>
<td>X[0.065]= 0.065</td>
<td>X[0.065]= 0.065</td>
</tr>
<tr>
<td>LDM-32F</td>
<td>X[0.065]= 0.065</td>
<td>X[0.065]= 0.065</td>
<td>X[0.065]= 0.065</td>
</tr>
<tr>
<td>LDM-E32F</td>
<td>X[0.018]= 0.018</td>
<td>X[0.018]= 0.018</td>
<td>X[0.018]= 0.018</td>
</tr>
<tr>
<td>LCC-8RF</td>
<td>X[0.064]= 0.064</td>
<td>X[0.064]= 0.064</td>
<td>X[0.064]= 0.064</td>
</tr>
<tr>
<td>ECC-FP</td>
<td>N/A</td>
<td>X[0.056]= 0.056</td>
<td>X[0.056]= 0.056</td>
</tr>
<tr>
<td>4XTMF</td>
<td>X[0.011]= 0.011</td>
<td>X[0.011]= 0.011</td>
<td>X[0.011]= 0.011</td>
</tr>
<tr>
<td>4-wire Detector Heads</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>Power Supervision Relays</td>
<td>Qty X[current draw]= Total</td>
<td>Qty X[current draw]= Total</td>
<td>Qty X[current draw]= Total</td>
</tr>
<tr>
<td>CP350 &amp; CP355</td>
<td>X[0.025]= 0.025</td>
<td>X[0.025]= 0.025</td>
<td>X[0.025]= 0.025</td>
</tr>
<tr>
<td>SD350 &amp; SD355</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>SD350T &amp; SD355T</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>AD350 &amp; AD355</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>H350 &amp; H355</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>H350R &amp; H355R</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>H355HT</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>D350P &amp; D350PL</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>D350RP &amp; D350RPL</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>B501BH &amp; B501BHT</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>B224R Relay Base</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>B224R Isolator Base</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>MMF-300</td>
<td>X[0.040]= 0.040</td>
<td>X[0.040]= 0.040</td>
<td>X[0.040]= 0.040</td>
</tr>
<tr>
<td>MMF-300-1G</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>MDF-300</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>MDF-301</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>MMF-302</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>MMF-302-6</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>BG-12LX</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>CMF-300</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>CMF-300-6</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>I300</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
<td>X[0.000]= 0.000</td>
</tr>
<tr>
<td>W-GATE</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>NAC #1</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>NAC #2</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>NAC #3</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>NAC #4</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
<tr>
<td>FCPS (remote sync)</td>
<td>X[0.02]= 0.02</td>
<td>X[0.02]= 0.02</td>
<td>X[0.02]= 0.02</td>
</tr>
<tr>
<td>Current Draw from TB3</td>
<td>X[ ]</td>
<td>X[ ]</td>
<td>X[ ]</td>
</tr>
</tbody>
</table>

### Table 7.3 System Current Load Calculations

1. All eight ACM-8RF relays activated on a single module.
2. All annunciator LEDs on
3. LDM-32F or ANN-I/O with LEDs on
4. If using the Reverse Polarity Alarm output, add 0.005 amps; if using the Reverse Polarity Trouble output, add another 0.005 amps.
5. Refer to the Device Compatibility Document for standby current.
6. Must use compatible listed Power Supervision Relay.
7. Maximum alarm current for each sounder base is 0.015 amps which must be supplied by aux. 24VDC source.
8. When powered by an external source, use 0.040A. When powered by the SLC, use 0.024A.
9. Total current load cannot exceed 3.0 amps with one transformer or 6.0 amps with optional XRM-24B(E) added.
7.4 Calculating the Battery Size

Use Table 7.4 to calculate the total Standby and Alarm load in ampere hours (AH). This total load determines the battery size (in AH), required to support the system upon loss of primary (AC) power. Complete Table 7.4 as follows:

1. Enter the totals from Table 7.3 on page 162, Calculation Columns 2 and 3 where shown
2. Enter the NFPA Standby and Alarm times (refer to ‘NFPA Requirements’ below)
3. Calculate the ampere hours for Standby and Alarm, then sum the Standby and Alarm ampere hours
4. Multiply the sum by the derating factor of 1.2 to calculate the proper battery size (in AH)
5. Write the ampere hour requirements on the Protected Premises label located inside the cabinet door

7.4.1 NFPA Battery Requirements

- NFPA 72 Local, Proprietary, Central, Auxiliary and Remote Fire Alarm Systems require 24 hours of standby power followed by 5 minutes in alarm

7.4.2 Selecting and Locating Batteries

Select sealed lead acid batteries that meet or exceed the total ampere hours calculated in Table 7.4. The control panel can charge batteries in the 7 AH to 18 AH range. The control panel cabinet is capable of housing batteries up to 18 AH. Batteries larger than 18 AH require a UL listed external battery charger and cabinet such as the BB-26, BB-55F or other UL listed external battery cabinet.
Appendix A: Software Zones

A.1 Correlations

Setup and configuration of an addressable system is different than a conventional system. In a conventional system, assignment of input devices (smoke detectors, pull stations, heat detectors, etc.) to zones is accomplished through wiring. The wiring is direct from clearly marked panel terminals to any device assigned to a particular zone. Connection of output devices (horns, bells, strobes, etc.) in a conventional system is accomplished by direct wiring of the output devices to Notification Appliance Circuit terminals.

In an addressable system, a minimum of a single pair of wires (SLC communication loop) is used to connect all addressable input and output devices. Communications between the FACP (Fire Alarm Control Panel) and all addressable devices takes place over the wire pair which originates from the FACP. Software programming is used to configure the system as opposed to direct wiring. Zone assignments are created via software means, hence the term software zones.

Setup of an MS-9200UDLS software zone is accomplished by panel programming. Each addressable device can be assigned to a maximum of five software zones. Each software zone, however, may have from 1 to 99 addressable input devices assigned to it and from 1 to 99 addressable output devices assigned to it.

Monitor and control modules comprise one group of 99 addresses, with each module having a unique address from 1 to 99. Detectors comprise a separate group of 99 addresses, each detector having a unique address from 1 to 99 in its group. Be careful not to duplicate addresses within any one group (modules and detectors). Refer to the following page for an example of zoning.

In the example on the following page:

- Zone 01 has the following addressable devices assigned to it:
  - SD355 smoke detectors with addresses 01 and 02
  - MMF-300 monitor module with address 01
  - MMF-302 monitor module with address 02 and 03
  - CMF-300 control modules with addresses 05, 06, 07, 09 and 13

- Zone 02 has the following addressable devices assigned to it:
  - MMF-302 monitor module with addresses 02 and 03
  - CP355 smoke detectors with addresses 03 and 04
  - CMF-300 control modules with addresses 08, 09 and 10

- Zone 03 has the following addressable devices assigned to it:
  - SD355 smoke detectors with addresses 05, 06 and 07
  - MMF-302 control module with address 04
  - CMF-300 control modules with addresses 09, 11 and 12

The example points out some of the key assignment features of the MS-9200UDLS. Addresses of detectors are not duplicated. Addresses of monitor and control modules are not duplicated. The control module with address 09 is assigned to three software zones (providing floor above and floor below). Be careful to properly plan the installation prior to installing any devices.
Correlation of Input and Output Zones

The zone correlations which are shown graphically above are also presented in Table A.1 on page 166 and Table A.2 on page 167.
## DETECTOR ZONE ASSIGNMENT

<table>
<thead>
<tr>
<th>Address</th>
<th>Device Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
<th>Address</th>
<th>Device Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>SD355</td>
<td>1</td>
<td>FIRST HALL</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>SD355</td>
<td>1</td>
<td>ELEV. LOBBY</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>CP355</td>
<td>2</td>
<td>2ND FLOOR</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>CP355</td>
<td>2</td>
<td>ROOM 210</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>SD355</td>
<td>3</td>
<td>3RD FLOOR</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>SD355</td>
<td>3</td>
<td>MEZZANINE</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>SD355</td>
<td>3</td>
<td>MECH. ROOM</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 08 | 58 |
| 09 | 59 |
| 10 | 60 |
| 11 | 61 |
| 12 | 62 |
| 13 | 63 |
| 14 | 64 |
| 15 | 65 |
| 16 | 66 |
| 17 | 67 |
| 18 | 68 |
| 19 | 69 |
| 20 | 70 |
| 21 | 71 |
| 22 | 72 |
| 23 | 73 |
| 24 | 74 |
| 25 | 75 |
| 26 | 76 |
| 27 | 77 |
| 28 | 78 |
| 29 | 79 |
| 30 | 80 |
| 31 | 81 |
| 32 | 82 |
| 33 | 83 |
| 34 | 84 |
| 35 | 85 |
| 36 | 86 |
| 37 | 87 |
| 38 | 88 |
| 39 | 89 |
| 40 | 90 |
| 41 | 91 |
| 42 | 92 |
| 43 | 93 |
| 44 | 94 |
| 45 | 95 |
| 46 | 96 |
| 47 | 97 |
| 48 | 98 |
| 49 | 99 |
| 50 |     |

Table A.1 Detector Programming Sheet Example
## Monitor/Control Module Zone Assignment

<table>
<thead>
<tr>
<th>Address</th>
<th>Device Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
<th>Address</th>
<th>Device Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>MMF-300</td>
<td>1</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>MMF-302</td>
<td>1, 2</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>MMF-302</td>
<td>1, 2</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>MMF-302</td>
<td>3</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>CMF-300</td>
<td>1</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>CMF-300</td>
<td>1</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>CMF-300</td>
<td>1</td>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>CMF-300</td>
<td>2</td>
<td></td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>CMF-300</td>
<td>1, 2, 3</td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CMF-300</td>
<td>2</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.2 Module Programming Sheet Example
<table>
<thead>
<tr>
<th>Address</th>
<th>Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
<th>Address</th>
<th>Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>01</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>02</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>03</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>04</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>05</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>06</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>07</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>08</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>09</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>21</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>22</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>23</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>24</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>25</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>26</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>27</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>28</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>29</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>30</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>31</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>32</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>33</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>34</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>35</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>36</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>37</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>38</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>39</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>40</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>41</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>42</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>43</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>44</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>45</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>46</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>47</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>48</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>49</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.3  Blank Detector Programming Sheet
### MONITOR/CONTROL MODULE ZONE ASSIGNMENT

<table>
<thead>
<tr>
<th>Address</th>
<th>Device Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
<th>Address</th>
<th>Device Type</th>
<th>Zone Number</th>
<th>ADJ/NOUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>51</td>
<td></td>
<td>51</td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>52</td>
<td></td>
<td>52</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>53</td>
<td></td>
<td>53</td>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>54</td>
<td></td>
<td>54</td>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>55</td>
<td></td>
<td>55</td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>56</td>
<td></td>
<td>56</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>57</td>
<td></td>
<td>57</td>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>58</td>
<td></td>
<td>58</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>59</td>
<td></td>
<td>59</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>60</td>
<td></td>
<td>60</td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>61</td>
<td></td>
<td>61</td>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>62</td>
<td></td>
<td>62</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>63</td>
<td></td>
<td>63</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>64</td>
<td></td>
<td>64</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>65</td>
<td></td>
<td>65</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>66</td>
<td></td>
<td>66</td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>67</td>
<td></td>
<td>67</td>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>68</td>
<td></td>
<td>68</td>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>69</td>
<td></td>
<td>69</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>70</td>
<td></td>
<td>70</td>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>71</td>
<td></td>
<td>71</td>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>72</td>
<td></td>
<td>72</td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>73</td>
<td></td>
<td>73</td>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>74</td>
<td></td>
<td>74</td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>75</td>
<td></td>
<td>75</td>
<td></td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>76</td>
<td></td>
<td>76</td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>77</td>
<td></td>
<td>77</td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>78</td>
<td></td>
<td>78</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>79</td>
<td></td>
<td>79</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>80</td>
<td></td>
<td>80</td>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>81</td>
<td></td>
<td>81</td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>82</td>
<td></td>
<td>82</td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>83</td>
<td></td>
<td>83</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>84</td>
<td></td>
<td>84</td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>85</td>
<td></td>
<td>85</td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>86</td>
<td></td>
<td>86</td>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>87</td>
<td></td>
<td>87</td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>88</td>
<td></td>
<td>88</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>89</td>
<td></td>
<td>89</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>90</td>
<td></td>
<td>90</td>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>91</td>
<td></td>
<td>91</td>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>92</td>
<td></td>
<td>92</td>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>93</td>
<td></td>
<td>93</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>94</td>
<td></td>
<td>94</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>95</td>
<td></td>
<td>95</td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>96</td>
<td></td>
<td>96</td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>97</td>
<td></td>
<td>97</td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>98</td>
<td></td>
<td>98</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>99</td>
<td></td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Table A.4 Blank Module Programming Sheet*
Appendix B: Default Programming

The following table provides a list of the programming options and their factory default settings.

<table>
<thead>
<tr>
<th>Program Option</th>
<th>Factory Default</th>
<th>Program Option</th>
<th>Factory Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Programming</td>
<td>Not Installed</td>
<td>Relay 1</td>
<td>Alarm</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Smoke-Photo</td>
<td>Relay 2</td>
<td>Trouble (fixed)</td>
</tr>
<tr>
<td>Detector Verification</td>
<td>Off</td>
<td>Relay 3</td>
<td>Supervisory</td>
</tr>
<tr>
<td>Detector Walktest</td>
<td>Yes</td>
<td>Annunciator Terminal Mode</td>
<td>No</td>
</tr>
<tr>
<td>Detector PAS</td>
<td>No</td>
<td>Annunciator ACS Mode</td>
<td>No</td>
</tr>
<tr>
<td>Detector Presignal</td>
<td>No</td>
<td>UDACT</td>
<td>No</td>
</tr>
<tr>
<td>Detector Zone Assign.</td>
<td>000 only</td>
<td>ACS Installed</td>
<td>No</td>
</tr>
<tr>
<td>Detector Adj/Noun</td>
<td>none</td>
<td>Onboard DACT</td>
<td>No</td>
</tr>
<tr>
<td>Module Programming</td>
<td>Not Installed</td>
<td>Printer-PC</td>
<td>No</td>
</tr>
<tr>
<td>Module Type</td>
<td>Monitor</td>
<td>Printer Baud</td>
<td>9600</td>
</tr>
<tr>
<td>Module Walktest</td>
<td>Yes</td>
<td>Service Terminal Panel ID</td>
<td>0000</td>
</tr>
<tr>
<td>Module Presignal</td>
<td>No</td>
<td>Ring Count</td>
<td>0</td>
</tr>
<tr>
<td>Module Zone Assign.</td>
<td>000 only</td>
<td>Primary Phone Type</td>
<td>Touchtone</td>
</tr>
<tr>
<td>Module Adj/Noun</td>
<td>none</td>
<td>Secondary Phone Type</td>
<td>Touchtone</td>
</tr>
<tr>
<td>Zone 0 Enable</td>
<td>Enabled</td>
<td>DACT Communication</td>
<td>OFF</td>
</tr>
<tr>
<td>Zone 1 Enable</td>
<td>Enabled</td>
<td>AC Loss Delay</td>
<td>2</td>
</tr>
<tr>
<td>Zone 2 Enable</td>
<td>Enabled</td>
<td>Backup Reporting</td>
<td>First Available</td>
</tr>
<tr>
<td>Zone 3 Enable</td>
<td>Enabled</td>
<td>Primary Reporting Style</td>
<td>Report Point</td>
</tr>
<tr>
<td>Zone 96 Enable</td>
<td>Enabled</td>
<td>Secondary Reporting Style</td>
<td>Report Point</td>
</tr>
<tr>
<td>Zones 97, 98 &amp; 99</td>
<td>Enabled</td>
<td>Primary Account Code</td>
<td>0000</td>
</tr>
<tr>
<td>Loop Style</td>
<td>Style 4</td>
<td>Secondary Account Code</td>
<td>0000</td>
</tr>
<tr>
<td>Loop Protocol</td>
<td>LITESPEED</td>
<td>Primary 24 Hour Test Time</td>
<td>0100</td>
</tr>
<tr>
<td>Trouble Reminder</td>
<td>Off</td>
<td>Secondary 24 Hour Test Time</td>
<td>0200</td>
</tr>
<tr>
<td>Banner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Format</td>
<td>12 Hr</td>
<td>Primary DACT Format</td>
<td>Ademco Contact ID</td>
</tr>
<tr>
<td>Hours Setting</td>
<td>12</td>
<td>Secondary DACT Format</td>
<td>Ademco Contact ID</td>
</tr>
<tr>
<td>Minutes Setting</td>
<td>00</td>
<td>ANN-Primary Enabled</td>
<td>No</td>
</tr>
<tr>
<td>Second Settings</td>
<td></td>
<td>ANN-Primary Modules Addr. 1 - 8</td>
<td>None</td>
</tr>
<tr>
<td>AM-PM Setting</td>
<td>AM</td>
<td>ANN-Secondary Enabled</td>
<td>No</td>
</tr>
<tr>
<td>Month Setting</td>
<td>01</td>
<td>ANN-Secondary Modules Addr. 1 - 8</td>
<td>None</td>
</tr>
<tr>
<td>Day Setting</td>
<td>01</td>
<td>ANN-S/PG Port</td>
<td></td>
</tr>
<tr>
<td>Year Setting</td>
<td>00</td>
<td>ANN-S/PG Baud</td>
<td>9600</td>
</tr>
<tr>
<td>Daylight Savings</td>
<td>Enabled</td>
<td>ANN-S/PG Data Bits</td>
<td>7</td>
</tr>
<tr>
<td>Month Start Daylight Savings</td>
<td>March</td>
<td>ANN-S/PG Parity</td>
<td>Even</td>
</tr>
<tr>
<td>Week Start Daylight Savings</td>
<td>Week 2</td>
<td>ANN-S/PG Stop Bits</td>
<td>1</td>
</tr>
<tr>
<td>Month End Daylight Savings</td>
<td>November</td>
<td>ANN-S/PG Offline Timer</td>
<td>60</td>
</tr>
<tr>
<td>Week End Daylight Savings</td>
<td>Week 1</td>
<td>ANN-S/PG Printer Supervision</td>
<td>No</td>
</tr>
<tr>
<td>Verification</td>
<td>OFF</td>
<td>ANN-80 Piezo Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>PAS Timer</td>
<td>0</td>
<td>ANN-80 Lock Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Presignal Timer</td>
<td>0</td>
<td>ANN-80 Acknowledge Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>Waterflow Retard Timer</td>
<td>0</td>
<td>ANN-80 Silence Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Enable</td>
<td>Enabled</td>
<td>ANN-80 Reset Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Silenceable</td>
<td>Yes</td>
<td>ANN-80 Drill Button Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Type</td>
<td>Bell</td>
<td>ANN-I/O Point/Zone</td>
<td>Zone</td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Sync Type</td>
<td>System Sensor</td>
<td>ANN-I/O Range</td>
<td>00-29</td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Autosilence</td>
<td>0</td>
<td>ANN-I/O Active LEDs Only</td>
<td></td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Coding</td>
<td>Steady</td>
<td>ANN-RLY Relay 1</td>
<td>Zone 1</td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Zones</td>
<td>Zone 000 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC 1, 2, 3 &amp; 4 Silence Inhibit</td>
<td>No</td>
<td>ANN-RLY Relay 10</td>
<td>Zone 10</td>
</tr>
<tr>
<td>Canadian Option Enabled</td>
<td>No</td>
<td>ANN-LED Point/Zone</td>
<td>Zone</td>
</tr>
<tr>
<td>Waterflow Silenceable</td>
<td>No</td>
<td>ANN-LED Alarms/ATS (Alarm, Trbl, Supv)</td>
<td>ATS</td>
</tr>
<tr>
<td>MNS Override</td>
<td>No</td>
<td>ANN-LED Range</td>
<td>0 - 9</td>
</tr>
</tbody>
</table>
Appendix C: NFPA Standard-Specific Requirements

The MS-9200UDLS has been designed for use in commercial, industrial, and institutional applications and meets the requirements for service under the National Fire Protection Association (NFPA) Standards outlined in this Appendix. The minimum system components required for compliance with the appropriate NFPA standard are listed below:

**MS-9200UDLS Control Panel**
Contains the main control board, cabinet (backbox and door), main power supply transformer and power supply.

**Batteries**
Refer to “Power Supply Calculations” on page 160, for Standby Power Requirements.

**Initiating Devices**
Connected to one of the control panel's Initiating Device Circuits.

**Notification Appliances**
Connected to the control panel's Notification Appliance Circuits via a control module.

The following additional equipment is needed for compliance with the NFPA 72 standards listed below:

**NFPA 72 NATIONAL FIRE ALARM STANDARDS FOR:**

**NFPA 72 Central Station Service (Protected Premises Unit) or Remote Station Service**
Onboard Digital Alarm Communicator Transmitter for connection to a compatible listed Central Station DACR or Protected Premises Receiving Unit. This unit must be installed as outlined in “Digital Alarm Communicator/Transmitter” on page 18.

OR
4XTMF Transmitter Module for connection to the RS82 Remote Station Receiver. See Figure C.2, “Remote Station Connection Using 4XTMF Module,” on page 173, for installation instructions for this unit.

**NFPA 72 Auxiliary Fire Alarm System**
4XTMF Transmitter Module for connection to a compatible listed Local Energy Municipal Box. This unit must be installed as illustrated in the section titled “4XTMF Transmitter Module Installation” on page 38 and as outlined in Figure C.1, “Municipal Box Connected to 4XTMF Transmitter Module” on page 172.

**NFPA 72 Proprietary Fire Alarm System**
MS-9200UDLS Alarm, Trouble and Supervisory contacts connected to Transmitter(s). See Figure C.3, “Proprietary Protective Signaling System,” on page 174, for installation instructions for this unit.
NFPA 72 Auxiliary Fire Alarm System

All connections are power-limited and supervised. This application is not suitable for separate transmission of sprinkler supervisory or trouble conditions.

Notes:
1. 3 ohms maximum loop resistance allowed for wiring from control panel to Municipal Box.
2. Cut JP3 on the MS-9200UDLS main circuit board to supervise placement of 4XTMF module and circuit.
4. Refer to “4XTMF Transmitter Module Installation” on page 38 for detailed information.

Figure C.1 Municipal Box Connected to 4XTMF Transmitter Module
NFPA 72 Remote Station Protective Signaling System

Notes:

2. Refer to “4XTMF Transmitter Module Installation” on page 38 for detailed information.

RS82 Remote Station Receiver UL listed.
Refer to Instruction Manual for Remote Station Receiver Model RS82.

Polarity Shown is Normal Standby

Cutting TBL Jumper allows the reverse polarity circuit to open with a system trouble condition if no alarm condition exists.

Figure C.2 Remote Station Connection Using 4XTMF Module

(Dummy load with a 4.7kΩ, ¼ watt resistor when no connection is made)
**NFPA 72 Proprietary Protective Signaling Systems**

**MS-9200UDLS Addressable Fire Control Panel**

**MS-9200UDLS Main Board**

Form-C Alarm contact programmed to activate on General Alarm.

Form-C Trouble contact which will automatically activate on any Trouble condition.

Form-C relay contact programmed to activate on Supervisory condition.

**Notes:**
1. Connection between the MS-9200UDLS and the transmitter are supervised by the transmitter.
2. This MS-9200UDLS/Transmitter arrangement can be employed for NFPA 72 Proprietary Protective Signaling System.
3. Potter Electric Model EFT-C has not been tested for UL 864 9th Edition and is for use in retrofit applications only.

**Figure C.3 Proprietary Protective Signaling System**
C.1 Central Station/Remote Station Transmitter: Connection to FACP Dry Contacts

The dry contacts of the FACP programmable relays can be used to trip a UL-864 Listed Central Station/Remote Station Transmitter. The FACP contacts must be supervised by the Central Station/Remote Station Transmitter module using End-of-Line Resistors (ELRs) with a value determined by the Transmitter manufacturer. Power is also provided by the Central Station/Remote Station Transmitter manufacturer. Refer to the Central Station/Remote Station Transmitter manufacturer’s manual for details.

![Typical Central Station/Remote Station Transmitter Module](image)

![FACP Main Circuit Board](image)

*Note: The Trouble Relay is a fail-safe relay. With power applied to the FACP and no troubles in the panel, the wiring should be connected to the NO and C contacts as indicated in the illustration.*

Figure C.4 FACP Dry Contacts Connection to Central Station/Remote Station Transmitter
C.2 MBT-1 Municipal Box Trip - Silenceable

The following figure illustrates the connection of the MBT-1 (Municipal Box Trip) between the FACP and a Local Energy Municipal Box. The use of an addressable control module programmed for General Alarm and Silenceable allows silencing of the Municipal Box without resetting the panel or box.

The addressable Control Module must be programmed as Silenceable and General Alarm.

*If the SLC device does not match the one in this figure, refer to the SLC manual wiring conversion charts for legacy and newer versions of the modules.

Figure C.5 MBT-1 Silenceable
Appendix D: FACP with Keltron

The following figure illustrates the connections between the FACP and Keltron Receiver/Transmitter.

---

**IMPORTANT!** All connections between the FACP and Keltron modules must be made within 20 feet and enclosed within conduit or equivalently protected against mechanical injury.

---

**CAUTION: POSSIBLE EQUIPMENT DAMAGE**

FOR REASONS OF WIRING DIAGRAM CLARITY, TERMINAL DESIGNATIONS OF KELTRON MODULES ARE NOT SHOWN IN ACTUAL ORDER. FOLLOW KELTRON MANUAL AND MODULE MARKINGS FOR EXACT TERMINAL LOCATIONS TO PREVENT SEVERE MODULE DAMAGE!

---

**Keltron 95M3158 TTM-RPS**

1. Terminals 7 and 8: Remote station alarm/trouble inputs.
2. Terminals 9 and 10: Sprinkler supervisory input.

---

**Fire Alarm Control Panel**

(terminal blocks are not shown in their actual positions in order to clarify wiring connections.)

---

*Note: For more information, refer to the Keltron manual.*

---

**Figure D.1 FACP with Keltron Wiring**
Appendix E: Wire Requirements

T-tapping of the SLC loop wiring is allowed for 2-wire (Style 4) configurations. The total resistance of any branch cannot exceed 40 ohms. The total wire length of all branches cannot exceed 10,000 feet (3,000 m).

Connecting external system accessories to the MS-9200UDLS main circuits must be carefully considered to ensure proper operation. It is important to use the correct type of wire, gauge and run length for each MS-9200UDLS circuit. Reference the chart below to specify wire requirements and limitations for each MS-9200UDLS circuit.

Note:

1. If the SLC loop is to be run in conduit with Notification Appliance Circuits, the risk of encountering problems can be greatly reduced by exclusively employing electronic sounders instead of more electronically noisy notification appliances such as electromechanical bells or horns.

2. The SLC can be programmed to operate in LiteSpeed mode (factory default setting) for a quicker device response time. While shielded wire is not required in LiteSpeed mode, it is recommended that all SLC wiring be twisted-pair to minimize the effects of electrical interference. Use the following table to determine the specific wiring requirements for the SLC when unshielded wire is used:

Refer to Table E.1 on page 179 and Table E.2 on page 180 for wiring requirements.
<table>
<thead>
<tr>
<th>CIRCUIT CONNECTIONS</th>
<th>WIRE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Type</td>
<td>Circuit Function</td>
</tr>
<tr>
<td>SLC loop (power-limited)</td>
<td>Connects to Addressable Devices</td>
</tr>
<tr>
<td>LITESPEED MODE</td>
<td>CLIP MODE</td>
</tr>
<tr>
<td>ACS-BUS (EIA-485) (power-limited)</td>
<td>Connects to annunciator modules/ ECC-50/100</td>
</tr>
<tr>
<td>ANN-BUS (EIA-485) (power-limited)</td>
<td>Connects to annunciator modules/ ECC-50/100</td>
</tr>
<tr>
<td>EIA-232 (power-limited)</td>
<td>Connects to remote PC computer</td>
</tr>
<tr>
<td>MMF-300 and MMF-301 (power-limited)</td>
<td>Initiating Device Circuit: Contact Closure</td>
</tr>
<tr>
<td>MMF-302 (power-limited)</td>
<td>Initiating Device Circuit: Two-wire Modules</td>
</tr>
<tr>
<td>CMF-300 (power-limited)</td>
<td>Notification Appliance Circuit</td>
</tr>
<tr>
<td>Remote Sync Output</td>
<td>Provides strobe and normal sync for remote NAC power supplies</td>
</tr>
</tbody>
</table>

Table E.1 FACP Wire Specifications

1. When using untwisted, unshielded wire, full conduit is recommended for optimum EMI/RFI protection.
E.1 NAC Wiring

The following table lists NAC wiring requirements for the FACP.

<table>
<thead>
<tr>
<th>NAC Load (Amps)</th>
<th>Max. allowable total loop resistance (ohms)</th>
<th>CLASS-B</th>
<th>Max. allowable wire pair length (feet)</th>
<th>CLASS-A</th>
<th>Max. allowable wire pair length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AWG 12 solid</td>
<td>AWG 14 solid</td>
<td>AWG 16 solid</td>
<td>AWG 18 solid</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td>12.72</td>
<td>3295</td>
<td>2072</td>
<td>1301</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>6.36</td>
<td>1648</td>
<td>1036</td>
<td>650</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>4.24</td>
<td>1098</td>
<td>691</td>
<td>434</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3.18</td>
<td>824</td>
<td>518</td>
<td>325</td>
</tr>
<tr>
<td>1.25</td>
<td></td>
<td>2.54</td>
<td>659</td>
<td>414</td>
<td>260</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>2.12</td>
<td>549</td>
<td>345</td>
<td>217</td>
</tr>
<tr>
<td>1.75</td>
<td></td>
<td>1.82</td>
<td>471</td>
<td>296</td>
<td>186</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.59</td>
<td>412</td>
<td>259</td>
<td>163</td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td>1.41</td>
<td>366</td>
<td>230</td>
<td>145</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>1.27</td>
<td>330</td>
<td>207</td>
<td>130</td>
</tr>
</tbody>
</table>

Table E.2 NAC Wiring Requirements for FACP

Notes:

2. These distances reflect the worst case scenario and are based on the current draw of the highest candela strobes at the low end of the supported NAC voltage with the entire load at the end of the circuit. Further distances can be achieved by performing a point-to-point voltage calculation that more accurately reflects the specific devices used and how they are dispersed on the circuit.
Appendix F: HVAC Control

The FACP can be programmed to shut down a building’s HVAC fans in the event of a fire. The fans cannot be restarted until the fire alarm condition has been cleared and the FACP has been reset to a normal (non-alarm) condition.

IMPORTANT! This HVAC feature is not to be used for smoke control. It is only designed to shut down fans during a fire alarm condition.

F.1 Control Module Operation

F.1.1 HVAC SHUTDN

The HVAC SHUTDN type code can be assigned to any addressable control relay module for the purpose of shutting down HVAC fans during a fire alarm condition. Devices connected to a module with this type code are unsupervised. To program this feature in the FACP:

- Program the HVAC SHUTDN type code to the control module which will be used to shut down the fans (refer to Type under the section titled “Edit Module Screen for Control Modules” on page 83).
- Program the control module to a software zone and program alarm input devices which, when activated are to cause fan shutdown, to the same software zone (refer to Zone Assignment under the section titled “Edit Module Screen for Control Modules” on page 83).
- Monitor the control module using an addressable monitor module programmed for Trouble Monitor. The monitor module label should be programmed to indicate HVAC SHUTDOWN. When the control module is active (HVAC SHUTDN), the monitor module will indicate a trouble condition at the FACP and the display should indicate the HVAC is shut down.

Once activated, the HVAC SHUTDN control module remains activated, even if the FACP is silenced or reset. After the alarm condition on the FACP has been cleared and the panel reset, the HVAC SHUTDN control module remains activated and the fans remain off. The monitor module programmed for Trouble Monitor which is being used to supervise the control module, will indicate a trouble condition at the control panel and the LCD should display that the HVAC is shut down. The fans can only be restarted when the HVAC SHUTDN control module is deactivated by the HVAC_restart module.

F.2 Monitor Module Operation

F.2.1 HVAC RESTART

The HVAC RESTART type code can be assigned to any addressable monitor module for the purpose of resetting (deactivating) the HVAC SHUTDN control module and turning the fans back on. The HVAC RESTART monitor module acts globally throughout the FACP system and therefore is not programmed to a particular software zone. To program this feature in the FACP:

- Program the HVAC RESTART type code to the monitor module which will be used to deactivate the HVAC SHUTDN control module and restart the fans (refer to Type Monitor under the section titled “Edit Module Screen for Monitor Module” on page 77).

The HVAC RESTART monitor module does not latch when activated. Pressing a switch connected to the monitor module will deactivate the HVAC SHUTDN control relay module only if there are no alarm conditions. The HVAC SHUTDN control relay module can be deactivated if trouble conditions exist on the FACP.
F.2.2 HVAC OVRRIDE

The HVAC OVRRIDE type code can be assigned to any addressable monitor module for the purpose of overriding or preventing the HVAC SHUTDN control modules from activating. The HVAC OVRRIDE monitor module acts globally throughout the FACP system and therefore is not programmed to a particular software zone. To program this feature in the FACP:

- Program the HVAC OVRRIDE type code to the monitor module which will be used to override the HVAC SHUTDN control module and prevent the fans from turning off (refer to Type Monitor under the section titled “Edit Module Screen for Monitor Module” on page 77).

The HVAC OVRRIDE monitor module does not latch when activated. Activating a switch connected to the monitor module will override all HVAC SHUTDN control relay modules in the system, preventing the HVAC SHUTDN modules from activating and causing the FACP LCD to display an active HVAC OVRRIDE module and turn on the Supervisory LED. Releasing the switch will allow the HVAC SHUTDN control relay modules to activate with subsequent alarms, turning off the fans.

As an example, pressing the HVAC OVRRIDE switch with no alarms in the system will prevent the fans from being turned off when an alarm does occur. As long as the switch is activated, the fans will not shutdown for any alarms. If the system is still in alarm when the switch is released, the fans will not shutdown unless another alarm occurs after the switch is released.

**Important!** If an alarm exists in the system and HVAC Shutdown has already occurred, HVAC OVRRIDE will have no effect on the HVAC SHUTDN control relay modules. HVAC OVRRIDE will prevent HVAC Shutdown from occurring only if it is initiated prior to an alarm condition.

---

**NOTE:** Activation of the HVAC OVRRIDE module causes a supervisory event that will be communicated to the Central Station if enabled.
Appendix G: Ademco Contact ID Format Event Code Descriptions

This appendix describes the various Event Codes and their messages which are available for the Ademco Contact ID Format.

G.1 Transmission Format Between DACT and Receiver

The transmission string for the Ademco Contact ID Format is as follows:

SSSS 18 QXYZ GG CCC

where

SSSS Four digit Subscriber ID Account Code
18= Identifies transmission as Contact ID to the receiver at the Central Station
Q= Event Qualifier where 1 = New Event and 3 = New Restore
XYZ= Event code
GG= Group number
CCC= Zone/Point number

Notes:
1. 18, which is used in the reporting structure to identify the transmission as Contact ID, is not printed out in the alarm and trouble report.
2. GG Group Number is fixed at ‘00’ except for multi-building systems using the Lite-Connect (ANN-LC) fiber card where GG indicates the node number.
3. CCC for Zone or Point Number:
   ✓ Zone Number is transmitted as ‘01’ for zone 1 up to ‘99’ for zone 99
   ✓ Point Number is transmitted as ‘01’ for point/address 1 up to ‘99’ for point/address 99

G.2 Ademco Contact ID Typical Printout

A typical printout from a Central Station receiver (such as the Ademco 685) of alarm and trouble reports in the Ademco Contact ID Reporting Structure follows:

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Rcvr/Line ID</th>
<th>SSSS</th>
<th>QXYZ</th>
<th>GG</th>
<th>CCC</th>
<th>Message Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E110</td>
<td>00</td>
<td>C001</td>
<td>general fire alarm on zone one</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E111</td>
<td>00</td>
<td>C002</td>
<td>smoke detector alarm on zone two</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E380</td>
<td>00</td>
<td>C003</td>
<td>fault on zone three</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E570</td>
<td>00</td>
<td>C009</td>
<td>Zone nine disabled</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R110</td>
<td>00</td>
<td>C001</td>
<td>Zone one alarm restored</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R111</td>
<td>00</td>
<td>C002</td>
<td>smoke detector zone two restored</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R380</td>
<td>00</td>
<td>C003</td>
<td>zone three fault restored</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>R570</td>
<td>00</td>
<td>C009</td>
<td>Zone nine reenabled</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E158</td>
<td>00</td>
<td>C006</td>
<td>high temperature, zone six</td>
</tr>
<tr>
<td>11:28</td>
<td>03/25</td>
<td>11</td>
<td>7777</td>
<td>E151</td>
<td>00</td>
<td>C007</td>
<td>gas detected, zone seven</td>
</tr>
</tbody>
</table>

Notes:
1. 11 is an example of a Receiver/Line Card, showing which receiver and line card the message was transmitted to.
2. Q, which is the Event Qualifier for the reporting structure, is printed out in the report as an E for New Event or R for New Restore.
Ademco Contact ID Format Event Code Descriptions

EVENT CODE CLASSIFICATIONS

<table>
<thead>
<tr>
<th>EVENT CODE CLASSIFICATIONS</th>
<th>100 ALARMS</th>
<th>200 SUPERVISORY</th>
<th>300 TROUBLES</th>
<th>400 OPEN/CLOSE REMOTE ACCESS</th>
<th>500 DISABLES/BY PASSES</th>
<th>600 TEST/MISC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ALARMS</td>
<td>Medical</td>
<td>Fire</td>
<td>System</td>
<td>Open/Close</td>
<td>System</td>
<td>Test</td>
</tr>
<tr>
<td>101 Medical</td>
<td>Fire</td>
<td>Panic</td>
<td>Sounder/Relay</td>
<td>Remote Access</td>
<td>Sounder/Relay</td>
<td></td>
</tr>
<tr>
<td>102 Burglary</td>
<td>Burglary</td>
<td>24 Hour</td>
<td>Protective Loop</td>
<td>Access Control</td>
<td>System Peripheral Communication</td>
<td></td>
</tr>
<tr>
<td>103 General</td>
<td>General</td>
<td></td>
<td>Sensor</td>
<td></td>
<td>Comm.</td>
<td></td>
</tr>
<tr>
<td>200 SUPERVISORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 Fire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202 Smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203 Combustion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204 Waterflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205 Heat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206 Flame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207 Pull Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208 Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209 Flame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 TROUBLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 Fire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302 Smoke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303 Combustion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304 Waterflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305 Heat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306 Flame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307 Pull Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308 Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309 Flame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310 Tamper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVENT MESSAGE

Medical Alarms - 100
100 Medical
101 Pendant Transmitter
102 Fail to report in

Fire Alarms - 110
110 Fire Alarm
111 Smoke
112 Combustion
113 Waterflow
114 Heat
115 Pull Station
116 Duct
117 Flame
118 Near Alarm

Panic Alarms - 120
120 Panic Alarm
121 Duress
122 Silent
123 Audible

Burglar Alarms - 130
130 Burglary
131 Perimeter
132 Interior
133 24-Hour
134 Entry/Exit
135 Day/Night
136 Outdoor
137 Tamper

General Alarms - 140
140 General Alarm
141 Polling loop open
142 Polling loop short
143 Expansion module failure
144 Sensor tamper
145 Expansion module tamper

24-Hour Non-Burglary - 150 and 160
150 24-Hour Non-Burg

MESSAGE

EMERG - Personal Emergency - #
EMERG - Personal Emergency - #
EMERG - Fail to Check-in - #
FIRE - Fire Alarm - #
FIRE - Smoke Detector - #
FIRE - Combustion - #
FIRE - Waterflow - #
FIRE - Heat Sensor - #
FIRE - Pull Station - #
FIRE - Duct Sensor - #
FIRE - Flame Sensor - #
FIRE - Near Alarm - #
PANIC - Panic - #
PANIC - Duress - #
PANIC - Silent Panic - #
PANIC - Audible Panic - #
Burglary - Burglary - #
Burglary - Perimeter - #
Burglary - Interior - #
Burglary - 24-Hour
Burglary - Entry/Exit - #
Burglary - Day/Night - #
Burglary - Outdoor - #
Burglary - Tamper - #
ALARM - General Alarm - #
ALARM - Polling Loop Open - #
ALARM - Polling Loop Short - #
ALARM - Exp. Module Fail - #
ALARM - Sensor Tamper - #
ALARM - Exp. Module Tamper - #
ALARM - 24-Hr. Non-Burg - #
### Ademco Contact ID Typical Printout

#### Ademco Contact ID Format Event Code Descriptions

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>151 Gas detected</td>
<td>ALARM - Gas Detected - #</td>
</tr>
<tr>
<td>152 Refrigeration</td>
<td>ALARM - Refrigeration - #</td>
</tr>
<tr>
<td>153 Loss of heat</td>
<td>ALARM - Heating System - #</td>
</tr>
<tr>
<td>154 Water leakage</td>
<td>ALARM - Water Leakage - #</td>
</tr>
<tr>
<td>155 Foil break</td>
<td>ALARM - Foil Break - #</td>
</tr>
<tr>
<td>156 Day trouble</td>
<td>ALARM - Day Zone - #</td>
</tr>
<tr>
<td>157 Low bottled gas level</td>
<td>ALARM - Low Gas Level - #</td>
</tr>
<tr>
<td>158 High Temp</td>
<td>ALARM - High Temperature - #</td>
</tr>
<tr>
<td>159 Low Temp</td>
<td>ALARM - Low Temperature - #</td>
</tr>
<tr>
<td>161 Loss of air flow</td>
<td>ALARM - Air Flow - #</td>
</tr>
</tbody>
</table>

**Fire Supervisory - 200 and 210**

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Fire supervisory</td>
<td>SUPER - Fire Supervisory - #</td>
</tr>
<tr>
<td>201 Low water pressure</td>
<td>SUPER - Low Water Pressure - #</td>
</tr>
<tr>
<td>202 Low CO2</td>
<td>SUPER - Low CO2</td>
</tr>
<tr>
<td>203 Gate valve sensor</td>
<td>SUPER - Gate Valve - #</td>
</tr>
<tr>
<td>204 Low water level</td>
<td>SUPER - Low Water Level - #</td>
</tr>
<tr>
<td>205 Pump activated</td>
<td>SUPER - Pump Activation - #</td>
</tr>
<tr>
<td>206 Pump failure</td>
<td>SUPER - Pump Failure - #</td>
</tr>
</tbody>
</table>

**System Troubles - 300 and 310**

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 System trouble</td>
<td>TROUBLE - System Trouble</td>
</tr>
<tr>
<td>301 AC loss</td>
<td>TROUBLE - AC Power</td>
</tr>
<tr>
<td>302 Low system battery</td>
<td>TROUBLE - System Low Battery</td>
</tr>
<tr>
<td>303 RAM checksum bad</td>
<td>TROUBLE - RAM Checksum (restore not applicable)</td>
</tr>
<tr>
<td>304 ROM checksum bad</td>
<td>TROUBLE - ROM Checksum (restore not applicable)</td>
</tr>
<tr>
<td>305 System reset</td>
<td>TROUBLE - System Reset (restore not applicable)</td>
</tr>
<tr>
<td>306 Panel program changed</td>
<td>TROUBLE - Prog. Change (restore not applicable)</td>
</tr>
<tr>
<td>307 Self-test failure</td>
<td>TROUBLE - Self Test Failure</td>
</tr>
<tr>
<td>308 System shutdown</td>
<td>TROUBLE - System Shutdown</td>
</tr>
<tr>
<td>309 Battery test failure</td>
<td>TROUBLE - Battery Test Failure</td>
</tr>
<tr>
<td>310 Ground fault</td>
<td>TROUBLE - Ground Fault - #</td>
</tr>
<tr>
<td>311 No battery</td>
<td>TROUBLE - No Battery</td>
</tr>
</tbody>
</table>

**Sounder/Relay Troubles - 320**

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>320 Sounder/Relay</td>
<td>TROUBLE - Sounder/Relay - #</td>
</tr>
<tr>
<td>321 Bell 1</td>
<td>TROUBLE - Bell/Siren #1</td>
</tr>
<tr>
<td>322 Bell 2</td>
<td>TROUBLE - Bell/Siren #2</td>
</tr>
<tr>
<td>323 Alarm relay</td>
<td>TROUBLE - Alarm Relay</td>
</tr>
<tr>
<td>324 Trouble relay</td>
<td>TROUBLE - Trouble Relay</td>
</tr>
<tr>
<td>325 Reversing relay</td>
<td>TROUBLE - Reversing Relay</td>
</tr>
<tr>
<td>326 Bell 3</td>
<td>TROUBLE - Bell/Siren #3</td>
</tr>
<tr>
<td>327 Bell 4</td>
<td>TROUBLE - Bell/Siren #4</td>
</tr>
</tbody>
</table>

**System Peripheral Troubles - 330 and 340**

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 System peripheral</td>
<td>TROUBLE - Sys. Peripheral - #</td>
</tr>
<tr>
<td>331 Polling loop open</td>
<td>TROUBLE - Polling Loop Open</td>
</tr>
<tr>
<td>332 Polling loop short</td>
<td>TROUBLE - Polling Loop Short</td>
</tr>
<tr>
<td>333 Expansion module failure</td>
<td>TROUBLE - Expansion Module Failure - #</td>
</tr>
<tr>
<td>334 Repeater Failure</td>
<td>TROUBLE - Repeater Failure - #</td>
</tr>
<tr>
<td>335 Local printer paper out</td>
<td>TROUBLE - Printer Paper Out</td>
</tr>
<tr>
<td>336 Local printer failure</td>
<td>TROUBLE - Local Printer</td>
</tr>
</tbody>
</table>

**Communication Troubles - 350 and 360**

<table>
<thead>
<tr>
<th>EVENT</th>
<th>MESSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 Communication</td>
<td>TROUBLE - Communication Trouble</td>
</tr>
<tr>
<td>351 Telco 1 fault</td>
<td>TROUBLE - Phone Line #1</td>
</tr>
<tr>
<td>352 Telco 2 fault</td>
<td>TROUBLE - Phone Line #2</td>
</tr>
<tr>
<td>353 Long range radio transmitter fault</td>
<td>TROUBLE - Radio Transmitter</td>
</tr>
<tr>
<td>354 Fail to communicate</td>
<td>TROUBLE - Fail to Communicate</td>
</tr>
<tr>
<td>355 Loss of radio supervision</td>
<td>TROUBLE - Radio Supervision</td>
</tr>
<tr>
<td>356 Loss of central polling</td>
<td>TROUBLE - Central Radio Polling</td>
</tr>
<tr>
<td>EVENT</td>
<td>MESSAGE</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Protection Loop Troubles - 370</td>
<td>TROUBLE - Protection Loop - #</td>
</tr>
<tr>
<td>370 Protection loop</td>
<td>TROUBLE - Protection Loop - #</td>
</tr>
<tr>
<td>371 Protection loop open</td>
<td>TROUBLE - Protection Loop Open - #</td>
</tr>
<tr>
<td>372 Protection loop short</td>
<td>TROUBLE - Protection Loop Short - #</td>
</tr>
<tr>
<td>373 Fire trouble</td>
<td>TROUBLE - Fire Loop - #</td>
</tr>
<tr>
<td>Sensor Troubles - 380</td>
<td>TROUBLE - Sensor Trouble - #</td>
</tr>
<tr>
<td>380 Sensor trouble</td>
<td>TROUBLE - Sensor Trouble - #</td>
</tr>
<tr>
<td>381 Loss of supervision - RF</td>
<td>TROUBLE - RF Sensor Supervision - #</td>
</tr>
<tr>
<td>382 Loss of supervision - RPM</td>
<td>TROUBLE - RPM Sensor Supervision - #</td>
</tr>
<tr>
<td>383 Sensor tamper</td>
<td>TROUBLE - Sensor Tamper - #</td>
</tr>
<tr>
<td>384 RF transmitter low battery</td>
<td>TROUBLE - RF Sensor Batt. - #</td>
</tr>
<tr>
<td>Open/Close - 400</td>
<td>OPENING</td>
</tr>
<tr>
<td>400 Open/Close</td>
<td>OPENING - User #</td>
</tr>
<tr>
<td>401 Open/Close by user</td>
<td>OPENING - Group User #</td>
</tr>
<tr>
<td>402 Group Open/Close</td>
<td>OPENING - Automatic</td>
</tr>
<tr>
<td>403 Automatic Open/Close</td>
<td>OPENING - Late</td>
</tr>
<tr>
<td>404 Late Open/Close</td>
<td>Opening not used</td>
</tr>
<tr>
<td>405 Deferred Open/Close</td>
<td>OPENING - Cancel</td>
</tr>
<tr>
<td>406 Cancel</td>
<td>OPENING - Remote</td>
</tr>
<tr>
<td>407 Remote arm/disarm</td>
<td>OPENING - Quick Arm</td>
</tr>
<tr>
<td>408 Quick arm</td>
<td>OPENING - Keyswitch</td>
</tr>
<tr>
<td>Remote Access - 410</td>
<td>REMOTE - Callback Requested (restore not applicable)</td>
</tr>
<tr>
<td>411 Callback request made</td>
<td>REMOTE - Successful Access (restore not applicable)</td>
</tr>
<tr>
<td>412 Success - download/access</td>
<td>REMOTE - Unsuccessful Access (restore not applicable)</td>
</tr>
<tr>
<td>413 Unsuccessful access</td>
<td>REMOTE - System Shutdown</td>
</tr>
<tr>
<td>414 System shutdown</td>
<td>REMOTE - Dialer Shutdown</td>
</tr>
<tr>
<td>415 Dialer shutdown</td>
<td>REMOTE - Dialer Shutdown</td>
</tr>
<tr>
<td>416 Success - upload/access</td>
<td>REMOTE - Successful Access (restore not applicable)</td>
</tr>
<tr>
<td>Access Control - 420</td>
<td>ACCESS - Access Denied - User # (restore not used)</td>
</tr>
<tr>
<td>421 Access denied</td>
<td>ACCESS - Access Granted - User # (restore not used)</td>
</tr>
<tr>
<td>422 Access report by user</td>
<td>ACCESS - Access Granted - User # (restore not used)</td>
</tr>
<tr>
<td>System Disables - 500 and 510</td>
<td>DISABLE - Sounder/Relay - #</td>
</tr>
<tr>
<td>520 Sounder/Relay disable</td>
<td>DISABLE - Bell/Siren - #1</td>
</tr>
<tr>
<td>521 Bell 1 disable</td>
<td>DISABLE - Bell/Siren - #2</td>
</tr>
<tr>
<td>522 Bell 2 disable</td>
<td>DISABLE - Alarm Relay</td>
</tr>
<tr>
<td>523 Alarm relay disable</td>
<td>DISABLE - Trouble Relay</td>
</tr>
<tr>
<td>524 Trouble relay disable</td>
<td>DISABLE - Reversing Relay</td>
</tr>
<tr>
<td>525 Reversing relay disable</td>
<td>DISABLE - Bell/Siren - #3</td>
</tr>
<tr>
<td>526 Bell 3 disable</td>
<td>DISABLE - Bell/Siren - #4</td>
</tr>
<tr>
<td>527 Bell 4 disable</td>
<td></td>
</tr>
<tr>
<td>System Peripheral Disables - 530 and 540</td>
<td></td>
</tr>
<tr>
<td>Communication Disables - 550 and 560</td>
<td>DISABLE - Dialer Disable</td>
</tr>
<tr>
<td>551 Dialer disabled</td>
<td>DISABLE - Radio Disable</td>
</tr>
<tr>
<td>552 Radio transmitter disabled</td>
<td></td>
</tr>
<tr>
<td>Bypasses - 570</td>
<td>BYPASS - Zone Bypass - #</td>
</tr>
<tr>
<td>570 Zone bypass</td>
<td>BYPASS - Fire Bypass - #</td>
</tr>
<tr>
<td>571 Fire bypass</td>
<td>BYPASS - 24-Hour Bypass - #</td>
</tr>
<tr>
<td>572 24-Hour zone bypass</td>
<td>BYPASS - Burg. Bypass - #</td>
</tr>
<tr>
<td>573 Burglar bypass</td>
<td>BYPASS - Group Bypass - #</td>
</tr>
<tr>
<td>574 Group bypass</td>
<td></td>
</tr>
<tr>
<td>EVENT</td>
<td>MESSAGE</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Test Misc. - 600</td>
<td>TEST - Manually Triggered (restore not applicable)</td>
</tr>
<tr>
<td>601 Manual trigger test</td>
<td>TEST - Periodic (restore not applicable)</td>
</tr>
<tr>
<td>602 Periodic test report</td>
<td>TEST - Periodic Radio (restore not applicable)</td>
</tr>
<tr>
<td>603 Periodic RF transmission</td>
<td>TEST - Fire Test (restore not used)</td>
</tr>
<tr>
<td>604 Fire test</td>
<td>STATUS - Status Follows (restore not applicable)</td>
</tr>
<tr>
<td>605 Status report to follow</td>
<td>LISTEN - Listen-in Active (restore not applicable)</td>
</tr>
<tr>
<td>606 Listen-in to follow</td>
<td>TEST - Walk Test Mode</td>
</tr>
<tr>
<td>607 Walk test mode</td>
<td>TEST - System Abnormal Test</td>
</tr>
<tr>
<td>608 System abnormal test</td>
<td></td>
</tr>
</tbody>
</table>
Appendix H: Central Station Points

The control panel transmits Central Station Reports in a numerical format which indicates the FACP addressable device address that is reporting. The following table indicates the Central Station Report (CS Report) number that will be transmitted and the addressable device address it represents.

<table>
<thead>
<tr>
<th>CS Report</th>
<th>Detector Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>001</td>
<td>033</td>
<td>033</td>
<td>065</td>
<td>065</td>
<td>097</td>
<td>097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>002</td>
<td>034</td>
<td>034</td>
<td>066</td>
<td>066</td>
<td>098</td>
<td>098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>003</td>
<td>035</td>
<td>035</td>
<td>067</td>
<td>067</td>
<td>099</td>
<td>099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>004</td>
<td>036</td>
<td>036</td>
<td>068</td>
<td>068</td>
<td>100</td>
<td>not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>005</td>
<td>037</td>
<td>037</td>
<td>069</td>
<td>069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>006</td>
<td>038</td>
<td>038</td>
<td>070</td>
<td>070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>007</td>
<td>039</td>
<td>039</td>
<td>071</td>
<td>071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>008</td>
<td>040</td>
<td>040</td>
<td>072</td>
<td>072</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>009</td>
<td>041</td>
<td>041</td>
<td>073</td>
<td>073</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>042</td>
<td>042</td>
<td>074</td>
<td>074</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>043</td>
<td>043</td>
<td>075</td>
<td>075</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>012</td>
<td>044</td>
<td>044</td>
<td>076</td>
<td>076</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>013</td>
<td>045</td>
<td>045</td>
<td>077</td>
<td>077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>014</td>
<td>046</td>
<td>046</td>
<td>078</td>
<td>078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>015</td>
<td>047</td>
<td>047</td>
<td>079</td>
<td>079</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>016</td>
<td>048</td>
<td>048</td>
<td>080</td>
<td>080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>017</td>
<td>049</td>
<td>049</td>
<td>081</td>
<td>081</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>018</td>
<td>050</td>
<td>050</td>
<td>082</td>
<td>082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>019</td>
<td>051</td>
<td>051</td>
<td>083</td>
<td>083</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>020</td>
<td>052</td>
<td>052</td>
<td>084</td>
<td>084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>021</td>
<td>053</td>
<td>053</td>
<td>085</td>
<td>085</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>022</td>
<td>054</td>
<td>054</td>
<td>086</td>
<td>086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>023</td>
<td>055</td>
<td>055</td>
<td>087</td>
<td>087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>024</td>
<td>056</td>
<td>056</td>
<td>088</td>
<td>088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>025</td>
<td>057</td>
<td>057</td>
<td>089</td>
<td>089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>026</td>
<td>058</td>
<td>058</td>
<td>090</td>
<td>090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>027</td>
<td>059</td>
<td>059</td>
<td>091</td>
<td>091</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>028</td>
<td>028</td>
<td>060</td>
<td>060</td>
<td>092</td>
<td>092</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>029</td>
<td>029</td>
<td>061</td>
<td>061</td>
<td>093</td>
<td>093</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>030</td>
<td>062</td>
<td>062</td>
<td>094</td>
<td>094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>031</td>
<td>063</td>
<td>063</td>
<td>095</td>
<td>095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>032</td>
<td>064</td>
<td>064</td>
<td>096</td>
<td>096</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table H.1  Addressable DETECTORS
<table>
<thead>
<tr>
<th>CS Report</th>
<th>Module Address</th>
<th>CS Report</th>
<th>Module Address</th>
<th>CS Report</th>
<th>Module Address</th>
<th>CS Report</th>
<th>Module Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>001</td>
<td>192</td>
<td>033</td>
<td>224</td>
<td>065</td>
<td>256</td>
<td>097</td>
</tr>
<tr>
<td>161</td>
<td>002</td>
<td>193</td>
<td>034</td>
<td>225</td>
<td>066</td>
<td>257</td>
<td>098</td>
</tr>
<tr>
<td>162</td>
<td>003</td>
<td>194</td>
<td>035</td>
<td>226</td>
<td>067</td>
<td>258</td>
<td>099</td>
</tr>
<tr>
<td>163</td>
<td>004</td>
<td>195</td>
<td>036</td>
<td>227</td>
<td>068</td>
<td>263</td>
<td>104</td>
</tr>
<tr>
<td>164</td>
<td>005</td>
<td>196</td>
<td>037</td>
<td>228</td>
<td>069</td>
<td>264</td>
<td>105</td>
</tr>
<tr>
<td>165</td>
<td>006</td>
<td>197</td>
<td>038</td>
<td>229</td>
<td>070</td>
<td>265</td>
<td>106</td>
</tr>
<tr>
<td>166</td>
<td>007</td>
<td>198</td>
<td>039</td>
<td>230</td>
<td>071</td>
<td>266</td>
<td>107</td>
</tr>
<tr>
<td>167</td>
<td>008</td>
<td>199</td>
<td>040</td>
<td>231</td>
<td>072</td>
<td>267</td>
<td>108</td>
</tr>
<tr>
<td>168</td>
<td>009</td>
<td>200</td>
<td>041</td>
<td>232</td>
<td>073</td>
<td>268</td>
<td>109</td>
</tr>
<tr>
<td>169</td>
<td>010</td>
<td>201</td>
<td>042</td>
<td>233</td>
<td>074</td>
<td>269</td>
<td>110</td>
</tr>
<tr>
<td>170</td>
<td>011</td>
<td>202</td>
<td>043</td>
<td>234</td>
<td>075</td>
<td>270</td>
<td>111</td>
</tr>
<tr>
<td>171</td>
<td>012</td>
<td>203</td>
<td>044</td>
<td>235</td>
<td>076</td>
<td>271</td>
<td>112</td>
</tr>
<tr>
<td>172</td>
<td>013</td>
<td>204</td>
<td>045</td>
<td>236</td>
<td>077</td>
<td>272</td>
<td>113</td>
</tr>
<tr>
<td>173</td>
<td>014</td>
<td>205</td>
<td>046</td>
<td>237</td>
<td>078</td>
<td>273</td>
<td>114</td>
</tr>
<tr>
<td>174</td>
<td>015</td>
<td>206</td>
<td>047</td>
<td>238</td>
<td>079</td>
<td>274</td>
<td>115</td>
</tr>
<tr>
<td>175</td>
<td>016</td>
<td>207</td>
<td>048</td>
<td>239</td>
<td>080</td>
<td>275</td>
<td>116</td>
</tr>
<tr>
<td>176</td>
<td>017</td>
<td>208</td>
<td>049</td>
<td>240</td>
<td>081</td>
<td>276</td>
<td>117</td>
</tr>
<tr>
<td>177</td>
<td>018</td>
<td>209</td>
<td>050</td>
<td>241</td>
<td>082</td>
<td>277</td>
<td>118</td>
</tr>
<tr>
<td>178</td>
<td>019</td>
<td>210</td>
<td>051</td>
<td>242</td>
<td>083</td>
<td>278</td>
<td>119</td>
</tr>
<tr>
<td>179</td>
<td>020</td>
<td>211</td>
<td>052</td>
<td>243</td>
<td>084</td>
<td>279</td>
<td>120</td>
</tr>
<tr>
<td>180</td>
<td>021</td>
<td>212</td>
<td>053</td>
<td>244</td>
<td>085</td>
<td>280</td>
<td>121</td>
</tr>
<tr>
<td>181</td>
<td>022</td>
<td>213</td>
<td>054</td>
<td>245</td>
<td>086</td>
<td>281</td>
<td>122</td>
</tr>
<tr>
<td>182</td>
<td>023</td>
<td>214</td>
<td>055</td>
<td>246</td>
<td>087</td>
<td>282</td>
<td>123</td>
</tr>
<tr>
<td>183</td>
<td>024</td>
<td>215</td>
<td>056</td>
<td>247</td>
<td>088</td>
<td>283</td>
<td>124</td>
</tr>
<tr>
<td>184</td>
<td>025</td>
<td>216</td>
<td>057</td>
<td>248</td>
<td>089</td>
<td>284</td>
<td>125</td>
</tr>
<tr>
<td>185</td>
<td>026</td>
<td>217</td>
<td>058</td>
<td>249</td>
<td>090</td>
<td>285</td>
<td>126</td>
</tr>
<tr>
<td>186</td>
<td>027</td>
<td>218</td>
<td>059</td>
<td>250</td>
<td>091</td>
<td>286</td>
<td>127</td>
</tr>
<tr>
<td>187</td>
<td>028</td>
<td>219</td>
<td>060</td>
<td>251</td>
<td>092</td>
<td>287</td>
<td>128</td>
</tr>
<tr>
<td>188</td>
<td>029</td>
<td>220</td>
<td>061</td>
<td>252</td>
<td>093</td>
<td>288</td>
<td>129</td>
</tr>
<tr>
<td>189</td>
<td>030</td>
<td>221</td>
<td>062</td>
<td>253</td>
<td>094</td>
<td>289</td>
<td>130</td>
</tr>
<tr>
<td>190</td>
<td>031</td>
<td>222</td>
<td>063</td>
<td>254</td>
<td>095</td>
<td>290</td>
<td>131</td>
</tr>
<tr>
<td>191</td>
<td>032</td>
<td>223</td>
<td>064</td>
<td>255</td>
<td>096</td>
<td>291</td>
<td>132</td>
</tr>
</tbody>
</table>

Table H.2 Addressable MODULES
Appendix I: Canadian Application

- The MS-9200UDLSC is supplied with the DP-9692 Dress Panel.
- When installing and programming the FACP, the Canadian Option must be set to **ON** prior to any other panel programming (refer to “Canadian Option” on page 101 of the Programming Section of this manual).
- ACS Series annunciators are not compatible for Canadian applications.
- At least one ANN-LED must be installed adjacent to the FACP as it is part of the primary operator interface. Wiring to the ANN-LED must be in metal conduit and must be connected to the FACP’s Primary ANN-BUS.
- If remote indicators are desired, they must be connected to the Secondary ANN-BUS circuit and the other special application power output.
- The installer must write in the **Date of Final Assembly** on the Master Marking and Warranty Label located on the FACP backbox door.
- To comply with CAN/ULC-S559-04, the 4XTMF option must be utilized along with the configuration shown in Figure I.3.
- Positive Alarm Sequence (PAS), the Pre-Signal option, and the Silence Inhibit Timer are not available for Canadian applications.

![Figure I.1 FACP Minimum Configuration - Single ANN-LED](image-url)
Optional Secondary ANN-BUS (data on connector TB8, power on TB1 Terminals 3&4 with JP6 pins 1&2 jumpered)

Primary ANN-BUS (data on connector TB9, power on TB1 Terminals 1&2) in metal conduit (adjacent to FACP)

ANN-LEDs

ANN-LED

ANN-80C

ANN-I/O

ANN-S/PG

ANN-RLY

When using an audio system, 6 ANN-LEDs can be used.

optional ECC-50/100 audio system

Figure I.2 FACP Maximum Configuration - Eight ANN-LEDs
Notes:
1. The and the must be mapped to the same zone which is programmed for supervisory operation.
2. No other device can be mapped to that supervisory zone.
3. Wire gauge must be 18AWG minimum.

*If the SLC device does not match the one in this figure, refer to the SLC manual appendix, which contains wiring conversion charts for type V and type H modules.

Figure I.3  Alternate Transmission for Supervisory Signals
Index

Numerics
24 Hour Test Time 122
300 Series addressable devices 20
4XTMF module 172, 173
  coil resistance 38
  current 38
  installation 38
  installation steps 39
  see also Transmitter Module 14, 20
  supervisory relay configuration 40
  voltage 38
A
AC Branch Circuit
  calculations 160
AC Loss Delay 96
AC Power 32
  current 15
  current, maximum 32
  voltage 15
  wiring 15, 32
Account Code 122
Acknowledge/Step 18, 134
ACM Series
  see also annunciator 24
ACM-16ATF Annunciator 24
ACM-32AF Annunciator 24
ACM-8RF 15
  contact rating 25
  see also Relay Control Module 25
ACM-8RF-BRKT mounting bracket 25
ACS LED annunciator 15
add Detector 68
add Module 76
addressable 13
addressable detectors
  see also detectors 14
Addressable Device Accessories 20
  addressable modules 19
  see also modules 14
addressing
  annunciators 107
  see also device addressing 92
  see also module or detector addressing 19
Ademco Contact ID format 183
Adjective
  control module 86
  list 74
  monitor module 81
  multiple entries 75
AEM-16ATF Annunciator 24
AEM-32AF Annunciator 25
Alarm 137
Alarm Silence 18, 134
alarm verification 14, 71, 141, 144
ANN-80 Annunciator Module 14, 23, 45
ANN-80C Indicator Module 14, 23
ANN-BUS
  guidelines 23
  power 43, 44
    primary 16, 108, 190
    secondary 16, 108, 190
ANN-I/O LED Driver 14, 23, 24, 52
ANN-LC 15, 23, 24, 58
ANN-LED Annunciator Module 14, 23, 24, 54
ANN-RLED Annunciator Module 15, 23, 24
ANN-RLY Relay Module 14, 23, 24, 56
ANN-S/PG Printer Module 14, 23, 24, 48
ANN-SB80KIT Mounting Kit 46
annunciator 23
  ACM 15, 107
  ACM-8RF 15
  LCD-80F 15
  LDM Graphic 15
annunciator addressing 107
annunciator guidelines 23
annunciator module 14, 15, 23, 24, 54
annunciator, graphic
  see also LDM Series 25
annunciator, remote
  see also LCD-80F 25
Audio Command Center 15, 62
audio panel control 62
Automatic Test Operation 141
Autoprogramming 14, 65, 67
Autosilence 14, 144
  NAC 98
auxiliary DC power 33

B
backbox 19
  see also cabinet 31
Banner 92
  setting 93
battery 19
  cable connection 33
  charger capacity 15
  see also secondary power 15, 33
battery box 21
  BB-26 19
battery charger 22
  disable 15
  external 22
  baud rate 126
C

Cabinet
dimensions 30, 31
Cabinet mounting 28
Calculate System Current Draw 161
Calculating the Battery Size 163
Canadian Applications 27, 190
Canadian Option 92, 101, 190
Central Station 120, 159
account code 122
communications 154
phone number 122
Phone Numbers 121
point assignments 188
report style 125
Central Station Reports 188
CHG-120F
see also battery charger 22
see also remote battery charger 15
CHG-75
see also battery charger 22
see also remote battery charger 15
Classic Loop Interface Protocol 91
Class A 34
Class B 34
NAC wiring 34
CLIP mode
see also Classic Loop Interface Protocol 91
Clock Format 94
Coded Operation 142
Coding
NAC 99
coding
two stage operation 99
communications format 122, 123
Control Buttons 134
control module 19
description display 87
display 83
edit 83
enable/disable 83
MNS Override 87
noun 86
noun/adjective 85, 86
silenceable 84
type 84
type codes 84
Converter Module
see also ZNAC-92 module 14, 20
Correlations 164
current
AC Power 32
availability 17
maximum 17
Current Draw Calculations 162

D

DACT
enable 119
onboard 119
data
see also detector data and sensitivity 141
Data Entry
via computer keyboard 64
via keypad 64
data values
see also detector data and sensitivity 14
Date setting 94
Daylight Savings Time 95
DC power
non-resettable 33
resettable 33
see also auxiliary DC power 33
Default Programming 170
Delete Detector 69
Delete Module 76
Description
control module 87
detector label 75
monitor module 82
Detector
add 68
adding description 73
delete 69
edit 69
enable/disable 71
screen display 70
type 71
verification 71
detector data 141, 152, 153
printout 151
recommended range 152
Detector Programming 68
device addressing 92
Digital Communicator 26
dimensions
cabinet 30
DIRTY1 152
DIRTY2 152
Disable 88
Disable Point
Maintenance Level 129
Downloading 158
dress panel 19, 21, 190
drift compensation 14, 153
definition 153
Drill 18, 134
Index

E
earth ground 32
ECC-50/100 22, 62, 102
ECC-FFT 22, 61
edit
  control module 83
  detector 69
  detector screens 70
  module, monitor 77
EIA-232 60
  for PC/Printer connection 16
  see also Printer/PC interface 14
EIA-485
  for ACS annunciators 16
  for LCD-80F 16
Emergency Command Center 13
Enable 88
Enable/Disable
  control module 83
  detector 71
  module, monitor 78
End-of-Line Resistor Assembly 20
Enter key 66
EOL-C(R/W) Mounting Plate 20
Erase History 104
Error Checking 159
event code classification 184
event codes 123
exiting
  programming 65, 66
  Read Status 65
  read status 66

F
FACP
  see also Fire Alarm Control Panel 13
Features 13
Fire Alarm Control Panel
  see also FACP 13
firefigter telephone 61
Form-C relay 25, 33

G
general alarm zone 80
  see also zone Z00 73
ground fault 60
guidelines
  ANN-BUS annunciators 23

H
Hazard Condition 139
History 103
  erase 104
  Maintenance Level 129
  view events 103
History file 14
HVAC Control 181
HVAC OVRRIDE 182
HVAC RESTART 181
HVAC SHUTDN 181

I
indicator
  LCD-80FC 15
Indicators 17
Installation 28
intelligent 13
Internet Protocol DACT 22
Inventory 13
INVREP 152
IPDACT 22

K
Key Panel 18
  function keys 18
  service/program keys 18
keyboard and keypad 64

L
lamp test 18
LCD display 14, 17
LCD-80F annunciator 15, 25
LCD-80FC indicator 15, 25
LDM Series annunciator 25
LDM-32 Graphic Annunciator 15
LED
  AC Power 134
  Alarm Silenced 135
  Battery 135
  Disabled 135
  Fire Alarm 134
  Ground 135
  Kiss-off 135
  Maintenance 135
  Primary Line Active 135
  Secondary Line Active 135
  see also Indicators 17
  Supervisory 135
  Trouble 135
LED annunciator 24
LED driver 14, 23, 24, 52
Lite connect 92
Lite-Connect 15, 23, 24
Lite-Connect module 58
Local Energy Municipal Box Service 38
Local Programming 65
Loop Setup 91
M
Maintenance Alert 14, 141
levels 152
Maintenance Program Level 2 66, 128
Manual programming 65
Master Program Level 1 66, 67
Medical Alert 140
MNS Override 87, 92, 100, 102
Mode key 66
Module
add 76
addressing 19
delete 76
edit monitor 77
enable/disable 78
see also addressable modules 19
Module Programming 76
Monitor module 19
adjective 81
enable/disable 78
noun 81
noun/adjective 80
type 78
type action 79
Type list 78
type selection 79
Mounting
cabinet 28
main circuit board 28
municipal box transmitter
see also 4XTMF module 38

N
NAC 15, 97, 140
Auto Silence 98
coded 142
coding 99
current 15
End-of-Line Resistor 15
MNS Override 100
power 13
see also Notification Appliance Circuit 13, 34
silence inhibit 100
silenceable 98
Style Y wiring diagram 34
Style Z wiring diagram 35
synchronized 142
type codes 98
voltage drop 15
voltage, operating 15
wiring Style 34
NAC converter module 34
NAC enable/disable 97
NAC options 92
NFC-50/100 22
NFPA 72 Auxiliary Fire Alarm System 171, 172
NFPA 72 Central Station Service (Protected
Premises Unit) or Remote Station Service 171
NFPA 72 Proprietary Fire Alarm System 171
NFPA 72 Proprietary Protective Signaling Sys-
tems 174
NFPA 72 Remote Station Protective Signaling
System 173
NFPA Battery Requirements 163
NFPA Standard 171
nonpower-limited
relay connections 33
nonresettable power 33
current 16, 33
nonsilenceable
waterflow 90, 102
Normal 135
normal display 65
Notification Appliance Circuit 15, 97
see also NAC 13, 34
Noun
list 74
monitor module 81
multiple entries 75
Noun/Adjective 73, 74
ccontrol module 85
monitor module 80
Operating Instructions 134
Operation
alarm 137
disable/enable 141
hazard condition 139
medical alert 140
NAC 140
normal 135
process monitor 139
programmed zone 141
supervisory 138
trouble 136
waterflow 141
Option Modules 20, 38, 105
annunciators/UDACT 106
Printer/PC 126
Options 13

P
PAS 72, 88, 143
see also Positive Alarm Sequence 14, 72
PAS BYPASS 143
PAS timer 95
Password 14
change 126
Maintenance Level 2 128
password 66
PC (personal computer)
  ground fault 60
Phone Line 2
  supervision 125
Phone Number 122
Piezo
  see also sounder 18
PK-CD Programming Utility 20
point assignments 188
Point Program 68
Positive Alarm Sequence 72, 143
  see also PAS 14
power
  NAC 13
  nonresettable 16
  resettable 16
power supply calculations 160
power-limited
  relay connections 33
Power-up
  first time 66
Pre-signal 14, 72, 89
  function 142
  selection 80
Pre-signal Delay timer 96
Pre-signal timer 95
primary ANN-BUS 16, 108, 190
Primary Phone 119
primary power
  see also AC Power 32
printer
  baud rate 126
  configuration 60
  connection 59
  ground fault 60
  setup 60
printer connection 49
printer module 14, 23, 24, 48
printer options 49
Printer/PC interface 14
Process Monitor 139
PROCJMON AR 101
Program
  check 127
  check correlations 127
  clear 127
Program Check
  Maintenance Level 130
program keys
  see also Key Panel 18
Programming 64, 65
  autoprogramming 65
  exiting 65
  factory default 170
  Level 1 66
  Level 2 66
  manual 65
  Master Level 1 67
  modules 76
  off-line computer 65
  via computer keyboard 64
  via panel keypad 64
Programming Levels 66
Programming Screens 66
Programming Sheet 166, 167, 168, 169
Programming Utility
  see also PK-CD 20
programming utility 13, 20, 74
Proprietary Yes
  see also Remote Upload 158
PRT/PK-CABLE
  for PC/Printer connection 60
PS-Tools Programming Utility 13, 20, 74

R
Read Status 65, 145
  annunciators 149, 150
  exiting 65
  history 149
  NAC 148
  power 147
  Print 151
  printer/PC 151
  program check 149
  relay 148
  system point 146
  Time-Date 153
  timers 148
  trouble reminder 148
  zones 147
Real-Time Clock 142
Recall/Increment Function 75, 82, 87
Receivers 156
Relay 15, 33, 101
  connections 33
  contact rating 15, 33
  fixed 33
  Form-C 15, 101
  programmable 13, 33
  programming 101
  selections 101
  trouble 13, 33
Relay Control Module
  see also ACM-8RF 25
  relay module 14, 23, 24, 56
Relay options 92
remote annunciator 14, 23, 45
Remote Download 157
remote indicator 14, 23
Remote Programming 65
Remote Station Service 38
remote switch functions 14
remote sync output 16
Remote Synchronization 35
REN
    see also Ringer Equivalence Number 25
Report Style 125
Reporting Enable 120
Reset 18, 134
resettable power 16, 33
current 33
Ring Count 120
Ringer Equivalence Number 25
ROME Series 57

S
secondary ANN- BUS 16, 108, 190
Secondary Phone 119
Secondary Power Requirements 163
Secret Code 158
Security Features 158
sensitivity 141, 153
    see also smoke detector sensitivity 141
Service Terminal 120
Signal rate 14
Signaling Line Circuit
    see also SLC 13
Silence Inhibit 14, 100, 143
Silenceable
    control module 84
    NAC 98
    waterflow 102
Silenceable Alarm Relay 101
silenceable circuits
    synchronized signals 98
Silenceable waterflow 90
SLC 13
    current 15
    reference manual 15
    resistance 15
    see also Signaling Line Circuit 13, 15
    voltage 15
    wiring length 15
SLC Loop Protocol 91
SLC Style 91
smoke detector
    chamber reading 152
data 141, 152
    sensitivity 14, 141
smoke detector power
current 16
Software Zones 13, 164
sounder 18
Specifications 15
strobe synchronization 14
Style 13
Style Y 34
    NAC wiring 34
Style Z 34
    wiring 35
NAC wiring 35
wiring 35
subscreen 66
supervision
    Phone Line 2 125
Supervisory 138
SUPERVISORY AR 101
supervisory relay
    configuring for 4XTMF 40
sync
    programming 97
    see also synchronization 100
sync output 16
current 16
End-of-Line resistor 16
voltage 16
synchronization 35, 142, 148
    by manufacturer 100
    programming 100
    see also strobe synchronization 14
synchronized 142
synchronized signals 142
    and silenceable circuits 98
System
    Maintenance Level 132
System Point 146
System Setup 92

T
Telephone Circuitry 25
Telephone Company
    Rights and Warnings 26
telephone line 37
Terminal 120
Test Time Interval 121, 122
Time and Date
    Maintenance Level 132
Time setting 94
Time-Date setting 92, 94
Time-out 159
Timers 92
Transformer Assembly 19
Transmittal Priorities 155
Transmitter Module 38
    see also 4XTMF module 14, 20
Trouble 136
trouble display 136
trouble relay 13
Trouble Reminder 92, 144, 148
trouble responses 136
Two Stage 89, 133
two stage operation 99
Type
    control module 84
detector 71
    monitor module 78
Index

U

UL power-limited wiring requirements 36
  see also power-limited and nonpower-limited 33
Upload/Download 157

V

Verification
detector 71
Verify Loops 103
View Events 103
voltage
  measurements 147
  ranges 147

W

Walktest 14, 72, 84, 104
  audible 104
  Maintenance Level 131
  operation 145
  selection 80
  silent 104
waterflow
  nonsilenceable 90, 102
  silenceable 90, 102
Waterflow Delay timer 95, 96
Waterflow Retard Timer 144
Waterflow Silenceable 92
W-GATE 22
  wiring 61
Wire Requirements 178
wireless gateway 22
  wiring 61
wiring
  AC Power 32
  earth ground 32
  NAC Style Y 34
  NAC Style Z 35
wiring Style 13

X

XRM-24
  see Transformer

Z

Z00 73, 80
Z97
  PAS zone 72
Z98 73
ZNAC-92 Converter module 34, 35
  see also Converter Module 14, 20
Zone 97 88
Zone 98 88
Zone Assignment 73, 80, 100
  control module 85
Zone Setup 88
  Maintenance Level 132
  zone type 90
  list 90
Zone Z97 72
Zone Z98
  pre-signal zone 73
Zones 147, 164
  see also software zones 13
Zones Disabled 89
Zones Enabled 89
Zones Installed 89
zones per device 73
NORMAL - Only AC POWER is illuminated green. All other indicators are off. LCD display will read SYSTEM ALL NORMAL.

PANEL KEY - The key to open the panel can be found at the following location:

WHEN AUDIBLE DEVICES ARE SOUNDING -

FOR AN ALARM

1. Evacuate the protected area
2. Notify the monitoring service and/or the Fire Department immediately. Tell them briefly what happened and what your current status is.
   Phones: ____________________________  ____________________________
   Fire Department  Monitoring Service
3. If the Fire Department is responding, be prepared to provide directions to arriving firefighters.

FOR TROUBLE, SUPERVISORY, AND EMERGENCY ALARMS

1. Notify the monitoring service and/or applicable first responders if this panel is connected to either one, and tell them what is happening.
2. Silence audible devices by unlocking and opening the panel and pressing the ACKNOWLEDGE/STEP button. The applicable indicator will remain illuminated. Contact authorized service personnel immediately! (See Below).

WARNING!
DO NOT ALLOW TROUBLE CONDITIONS TO REMAIN LOGGED IN THE SYSTEM. THE PROTECTION THE SYSTEM OFFERS HAS BEEN COMPROMISED OR ELIMINATED, WHEN A TROUBLE CONDITION EXISTS.

To return to normal after an alarm
1. Do not enter the protected area until safe to do so.
2. Clear all initiating devices. Smoke detectors will not reset if there is still smoke in the area.
3. Reset the control panel (PRESS the RESET button)

Power failure or brownout
If AC power drops too low or fails, AC POWER indicator will extinguish, the system TROUBLE indicator will turn on yellow, and the panel buzzer and any other audible trouble devices will sound. Contact authorized service personnel immediately. See below.

Manual activation (Fire Drill or otherwise)
Notification Appliance Circuits (NACs) can be activated by pressing and holding the DRILL button for at least two seconds. NOTE: You may want to disconnect the municipal box by sliding the DISCONNECT switch, located on the 4XTMF module, to its disconnect position (to the right). If a DACT is connected, notify the monitoring service before conducting any fire drills or tests.

Alarm Silencing
Notification Appliance Circuits may be silenced by pressing the ALARM SILENCE button. ALARM SILENCED will turn on yellow. Subsequent alarms will re-activate circuits. Press the RESET button to clear the "silenced" condition.
   NOTE: Notification Appliance Circuits may be programmed as nonsilenceable. Also, Signal Silence Inhibit, if enabled, will prevent silencing of NACs for one minute after an alarm (see manual).

To test the indicators, LCD display and piezo
Press and release the RESET button and check all indicators/LEDs. Every indicator/LED should be on, LCD shows all pixels on, piezo sounder beeps.

For more information, refer to the MS-9200UDLS Series Manual, Document #52750. It is kept in the following location:

______________________________

THIS SHEET SHALL BE FRAMED ADJACENT TO THE CONTROL PANEL
Manufacturer Warranties and Limitation of Liability

**Manufacturer Warranties.** Subject to the limitations set forth herein, Manufacturer warrants that the Products manufactured by it in its Northford, Connecticut facility and sold by it to its authorized Distributors shall be free, under normal use and service, from defects in material and workmanship for a period of thirty six months (36) months from the date of manufacture (effective Jan. 1, 2009). The Products manufactured and sold by Manufacturer are date stamped at the time of production. Manufacturer does not warrant Products that are not manufactured by it in its Northford, Connecticut facility but assigns to its Distributor, to the extent possible, any warranty offered by the manufacturer of such product. This warranty shall be void if a Product is altered, serviced or repaired by anyone other than Manufacturer or its authorized Distributors. This warranty shall also be void if there is a failure to maintain the Products and the systems in which they operate in proper working conditions.

MANUFACTURER MAKES NO FURTHER WARRANTIES, AND DISCLAIMS ANY AND ALL OTHER WARRANTIES, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, TRADEMARKS, PROGRAMS AND SERVICES RENDERED BY MANUFACTURER INCLUDING WITHOUT LIMITATION, INFRINGEMENT, TITLE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. MANUFACTURER SHALL NOT BE LIABLE FOR ANY PERSONAL INJURY OR DEATH WHICH MAY ARISE IN THE COURSE OF, OR AS A RESULT OF, PERSONAL, COMMERCIAL OR INDUSTRIALUSES OF ITS PRODUCTS.

This document constitutes the only warranty made by Manufacturer with respect to its products and replaces all previous warranties and is the only warranty made by Manufacturer. No increase or alteration, written or verbal, of the obligation of this warranty is authorized. Manufacturer does not represent that its products will prevent any loss by fire or otherwise.

**Warranty Claims.** Manufacturer shall replace or repair, at Manufacturer's discretion, each part returned by its authorized Distributor and acknowledged by Manufacturer to be defective, provided that such part shall have been returned to Manufacturer with all charges prepaid and the authorized Distributor has completed Manufacturer's Return Material Authorization form. The replacement part shall come from Manufacturer's stock and may be new or refurbished. THE FOREGOING IS DISTRIBUTOR'S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A WARRANTY CLAIM.